Immobilization of cobalt oxide nanoparticles on porous nitrogen-doped carbon as electrocatalyst for oxygen evolution

被引:1
|
作者
Li, Shusheng [1 ]
Kuang, Rui [2 ]
Kong, Xiang Zheng [1 ]
Zhu, Xiaoli [1 ]
Jiang, Xubao [1 ]
机构
[1] Univ Jinan, Coll Chem & Chem Engn, Jinan 250022, Peoples R China
[2] Shandong Jiaotong Univ, Coll Traff Civil Engn, Jinan 250357, Peoples R China
来源
CHINESE JOURNAL OF CHEMICAL ENGINEERING | 2022年 / 52卷
关键词
Porous polyurea; N-doped carbon-Co3O4 hybrid; Oxygen evolution; Catalyst; Electrolysis; Electrochemistry; TOLUENE DIISOCYANATE; HYDROGEN-EVOLUTION; NICKEL-HYDROXIDE; EFFICIENT; WATER; GRAPHENE; POLYUREA; ARRAY; POLYMERIZATION; SURFACE;
D O I
10.1016/j.cjche.2021.12.021
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Highly efficient and robust electrocatalysts have been in urgent demand for oxygen evolution reaction (OER). For this purpose, high-cost carbon materials, such as graphene and carbon nanotubes, have been used as supports to metal oxides to enhance their catalytic activity. We report here a new Co3O4-based catalyst with nitrogen-doped porous carbon material as the support, prepared by pyrolysis of porous polyurea (PU) with Co(NO3)(2) immobilized on its surface. To this end, PU was first synthesized, without any additive, through a very simple one-step precipitation polymerization of toluene diisocyanate in a binary mixture of H2O-acetone at room temperature. By immersing PU in an aqueous solution of Co (NO3)(2) at room temperature, a cobalt coordinated polymer composite, Co(NO3)(2)/PU, was obtained, which was heated at 500 degrees C in air for 2 h to get a hybrid, Co3O4/NC, consisting of Co3O4 nanocrystals and sp(2)-hybridized N-doped carbon. Using this Co3O4/NC as a catalyst in OER, a current density of 10 mA.cm(-2) was readily achieved with a low overpotential of 293 mV with a Tafel slope of 87 mV.dec(-1), a high catalytic activity. This high performance was well retained after 1000 recycled uses, demonstrating its good durability. This work provides therefore a facile yet simple pathway to fabrication of a new transition metal oxides-based N-doped carbon catalyst for OER with high performance. (C) 2022 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.
引用
收藏
页码:10 / 18
页数:9
相关论文
共 50 条
  • [1] Cobalt Sulfide Embedded in Porous Nitrogen-doped Carbon as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions
    Cao, Xuecheng
    Zheng, Xiangjun
    Tian, Jinghua
    Jin, Chao
    Ke, Ke
    Yang, Ruizhi
    ELECTROCHIMICA ACTA, 2016, 191 : 776 - 783
  • [2] FeNi nanoparticles embedded porous nitrogen-doped nanocarbon as efficient electrocatalyst for oxygen evolution reaction
    Zhang, Xiaojuan
    Chen, Yuanfu
    Wang, Bin
    Chen, Minglong
    Yu, Bo
    Wang, Xinqiang
    Zhang, Wanli
    Yang, Dongxu
    ELECTROCHIMICA ACTA, 2019, 321
  • [3] Cobalt doped β-molybdenum carbide nanoparticles encapsulated within nitrogen-doped carbon for oxygen evolution
    Zhu, Xinyang
    Zhang, Xueping
    Huang, Liang
    Liu, Yongqin
    Zhang, He
    Dong, Shaojun
    CHEMICAL COMMUNICATIONS, 2019, 55 (67) : 9995 - 9998
  • [4] MOF-templated cobalt nanoparticles embedded in nitrogen-doped porous carbon: a bifunctional electrocatalyst for overall water splitting
    Nath, Karabi
    Bhunia, Kousik
    Pradhan, Debabrata
    Biradha, Kumar
    NANOSCALE ADVANCES, 2019, 1 (06): : 2293 - 2302
  • [5] Cobalt and cobalt oxide supported on nitrogen-doped porous carbon as electrode materials for hydrogen evolution reaction
    Wang, Hongjuan
    Ma, Ningning
    Cao, Yonghai
    Yu, Hao
    Zuo, Jianliang
    Fan, Wei
    Peng, Feng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (07) : 3649 - 3657
  • [6] Cobalt/Nitrogen-Doped Porous Carbon Nanosheets Derived from Polymerizable Ionic Liquids as Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reaction
    Gao, Jian
    Ma, Na
    Zheng, Yumei
    Zhang, Jiafeng
    Gui, Jianzhou
    Guo, Chunkai
    An, Huiqin
    Tan, Xiaoyao
    Yin, Zhen
    Ma, Ding
    CHEMCATCHEM, 2017, 9 (09) : 1601 - 1609
  • [7] Nitrogen-doped porous carbon embedded with cobalt nanoparticles for excellent oxygen reduction reaction
    Lu, Yaxiang
    Wen, Xin
    Chen, Xuecheng
    Chu, Paul K.
    Tang, Tao
    Mijowska, Ewa
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 546 : 344 - 350
  • [8] Cobalt Nanoparticles Embedded in Nitrogen-Doped Carbon for the Hydrogen Evolution Reaction
    Fei, Huilong
    Yang, Yang
    Peng, Zhiwei
    Ruan, Gedeng
    Zhong, Qifeng
    Li, Lei
    Samuel, Errol L. G.
    Tour, James M.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (15) : 8083 - 8087
  • [9] Electrocatalytic activity in the oxygen evolution reaction of nitrogen-doped mesoporous carbon-supported cobalt oxide nanoparticles
    Lofek, Magdalena
    Rylko, Anna
    Grzybek, Gabriela
    Ejsmont, Aleksander
    Darvishzad, Termeh
    Goscianska, Joanna
    Kotarba, Andrzej
    Stelmachowski, Pawel
    CATALYSIS TODAY, 2024, 441
  • [10] Facile synthesis of cobalt nanoparticles embedded nitrogen-doped carbon nanotubes as electrocatalyst of hydrogen evolution reaction
    Qian, Yingjiang
    Huang, Shaofeng
    Chen, Zhiyuan
    Huang, Yun
    Li, Dongxu
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2019, 27 (10) : 808 - 815