Quantum dot vertical-cavity surface-emitting lasers covering the 'green gap'

被引:106
作者
Mei, Yang [1 ]
Weng, Guo-En [1 ,2 ]
Zhang, Bao-Ping [1 ]
Liu, Jian-Ping [3 ]
Hofmann, Werner [1 ,4 ]
Ying, Lei-Ying [1 ]
Zhang, Jiang-Yong [1 ]
Li, Zeng-Cheng [3 ]
Yang, Hui [3 ]
Kuo, Hao-Chung [1 ,5 ,6 ]
机构
[1] Xiamen Univ, Optoelect Engn Res Ctr, Dept Elect Engn, Xiamen 361005, Fujian, Peoples R China
[2] East China Normal Univ, Dept Elect Engn, Shanghai 200241, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Jiangsu, Peoples R China
[4] Tech Univ Berlin, Sch Solid State Phys, D-10623 Berlin, Germany
[5] Taiwan Chiao Tung Univ, Dept Photon, Hsinchu, Taiwan
[6] Taiwan Chiao Tung Univ, Inst Electroopt Engn, Hsinchu, Taiwan
基金
中国国家自然科学基金;
关键词
GaN; InGaN; quantum dot; vertical-cavity surface-emitting laser; wide-gap semiconductor; SEMICONDUCTOR-LASERS; NOBEL LECTURE; VCSELS; DIODES; JUNCTIONS; EMISSION; PROGRESS;
D O I
10.1038/lsa.2016.199
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Semiconductor vertical-cavity surface-emitting lasers (VCSELs) with wavelengths from 491.8 to 565.7 nm, covering most of the 'green gap', are demonstrated. For these lasers, the same quantum dot (QD) active region was used, whereas the wavelength was controlled by adjusting the cavity length, which is difficult for edge-emitting lasers. Compared with reports in the literature for green VCSELs, our lasers have set a few world records for the lowest threshold, longest wavelength and continuous-wave (CW) lasing at room temperature. The nanoscale QDs contribute dominantly to the low threshold. The emitting wavelength depends on the electron-photon interaction or the coupling between the active layer and the optical field, which is modulated by the cavity length. The green VCSELs exhibit a low-thermal resistance of 915 kW(-1), which benefits the CW lasing. Such VCSELs are important for small-size, low power consumption full-color displays and projectors.
引用
收藏
页码:e16199 / e16199
页数:7
相关论文
共 50 条
[1]   Fascinating journeys into blue light (Nobel Lecture) [J].
Akasaki, Isamu .
ANNALEN DER PHYSIK, 2015, 527 (5-6) :311-+
[2]   Progress in GaN-based quantum dots for optoelectronics applications [J].
Arakawa, Y .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2002, 8 (04) :823-832
[3]   InGaN/GaN Quantum Dot Blue and Green Lasers [J].
Bhattacharya, P. ;
Banerjee, A. ;
Frost, T. .
NOVEL IN-PLANE SEMICONDUCTOR LASERS XII, 2013, 8640
[4]  
Chang-Hasnain C. J., 1998, OPN Optics & Photonics News, V9, P34, DOI 10.1364/OPN.9.5.000034
[5]   531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {20(2)over-bar1} Free-Standing GaN Substrates [J].
Enya, Yohei ;
Yoshizumi, Yusuke ;
Kyono, Takashi ;
Akita, Katsushi ;
Ueno, Masaki ;
Adachi, Masahiro ;
Sumitomo, Takamichi ;
Tokuyama, Shinji ;
Ikegami, Takatoshi ;
Katayama, Koji ;
Nakamura, Takao .
APPLIED PHYSICS EXPRESS, 2009, 2 (08)
[6]   Wide-bandgap semiconductor materials: For their full bloom [J].
Fujita, Shizuo .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (03)
[7]   Optical Gain Spectra of a (0001) InGaN Green Laser Diode [J].
Funato, Mitsuru ;
Kim, Yoon Seok ;
Ochi, Yoshiaki ;
Kaneta, Akio ;
Kawakami, Yoichi ;
Miyoshi, Takashi ;
Nagahama, Shin-ichi .
APPLIED PHYSICS EXPRESS, 2013, 6 (12)
[8]   BLUE-GREEN LASER-DIODES [J].
HAASE, MA ;
QIU, J ;
DEPUYDT, JM ;
CHENG, H .
APPLIED PHYSICS LETTERS, 1991, 59 (11) :1272-1274
[9]   COHERENT LIGHT EMISSION FROM GAAS JUNCTIONS [J].
HALL, RN ;
CARLSON, RO ;
SOLTYS, TJ ;
FENNER, GE ;
KINGSLEY, JD .
PHYSICAL REVIEW LETTERS, 1962, 9 (09) :366-&
[10]   Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers [J].
Holder, Casey ;
Speck, James S. ;
DenBaars, Steven P. ;
Nakamura, Shuji ;
Feezell, Daniel .
APPLIED PHYSICS EXPRESS, 2012, 5 (09)