Solitons in triangular and honeycomb dynamical lattices with the cubic nonlinearity

被引:68
作者
Kevrekidis, PG [1 ]
Malomed, BA
Gaididei, YB
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
[3] NN Bogolyubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 01期
关键词
D O I
10.1103/PhysRevE.66.016609
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the existence and stability of localized states in the discrete nonlinear Schrodinger equation on two-dimensional nonsquare lattices. The model includes both the nearest-neighbor and long-range interactions. For the fundamental strongly localized soliton, the results depend on the coordination number, i.e., on the particular type of lattice. The long-range interactions additionally destabilize the discrete soliton, or make it more stable, if the sign of the interaction is, respectively, the same as or opposite to the sign of the short-range interaction. We also explore more complicated solutions, such as twisted localized modes and solutions carrying multiple topological charge (vortices) that are specific to the triangular and honeycomb lattices. In the cases when such vortices are unstable, direct simulations demonstrate that they typically turn into zero-vorticity fundamental solitons.
引用
收藏
页码:1 / 016609
页数:10
相关论文
共 50 条
[21]   Dynamics in PT-Symmetric Honeycomb Lattices with Nonlinearity [J].
Curtis, Christopher W. ;
Zhu, Yi .
STUDIES IN APPLIED MATHEMATICS, 2015, 135 (02) :139-170
[22]   Triangular and honeycomb lattices of cold atoms in optical cavities [J].
Safaei, Shabnam ;
Miniatura, Christian ;
Gremaud, Benoit .
PHYSICAL REVIEW A, 2015, 92 (04)
[23]   Spin dynamics of S=2 triangular and honeycomb lattices [J].
Reuss, Anna ;
Ksenofontov, Vadim ;
Menten, Julia ;
Kremer, Reinhard K. ;
Moeller, Angela .
PHYSICAL REVIEW B, 2020, 101 (18)
[24]   QUANTUM MAGNETS ON THE HONEYCOMB AND TRIANGULAR LATTICES AT T = 0 [J].
OITMAA, J ;
HAMER, CJ ;
ZHENG, WH .
PHYSICAL REVIEW B, 1992, 45 (17) :9834-9841
[25]   Explicit solutions for a nonlinear model on the honeycomb and triangular lattices [J].
Vekslerchik, V. E. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2016, 23 (03) :399-422
[26]   Explicit solutions for a nonlinear model on the honeycomb and triangular lattices [J].
V. E. Vekslerchik .
Journal of Nonlinear Mathematical Physics, 2016, 23 :399-422
[27]   Nonequilibrium opinion dynamics on triangular, honeycomb, and Kagome lattices [J].
Lima, F. W. S. ;
Crokidakis, N. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2017, 28 (10)
[28]   The 3D solitons and vortices in 3D discrete monatomic lattices with cubic and quartic nonlinearity [J].
Xu, Q ;
Tian, Q .
CHINESE PHYSICS, 2006, 15 (02) :253-265
[29]   Solitons and Charge Transport in Triangular and Quadratic Crystal Lattices [J].
Chetverikov, A. P. ;
Ebeling, W. ;
Velarde, M. G. .
QUODONS IN MICA: NONLINEAR LOCALIZED TRAVELLING EXCITATIONS IN CRYSTALS, 2015, 221 :321-339
[30]   Optical solitons with generalized quadratic-cubic nonlinearity [J].
Dan, Jayita ;
Garai, Sudip ;
Ghose-Choudhury, A. ;
Biswas, Anjan ;
Yildirim, Yakup ;
Alshehri, Hashim M. .
OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2022, 16 (9-10) :450-452