A SCR-based error estimation and adaptive finite element method for the Allen-Cahn equation

被引:33
作者
Chen, Yaoyao [1 ]
Huang, Yunqing [2 ]
Yi, Nianyu [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan 411105, Hunan, Peoples R China
关键词
Allen-Cahn equation; Superconvergent cluster recovery; A posteriori error estimation; Adaptive; Finite element method; COMPUTER-SIMULATION; IMAGE SEGMENTATION; NUMERICAL-ANALYSIS; CONTINUUM MODEL; GROWTH; RECOVERY; APPROXIMATIONS; DYNAMICS;
D O I
10.1016/j.camwa.2019.02.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the adaptive finite element method for the Allen-Cahn equation. The adaptive method is based on a second order accurate unconditionally energy stable finite element scheme and a recovery-type a posteriori error estimator. A SCR-based a posteriori error estimation is derived to control the mesh refinement and coarsening. A time-space adaptive algorithm is proposed for numerical approximation of the Allen-Cahn equation. Numerical experiments are presented to illustrate the reliability and efficiency of the proposed SCR-based error estimator and the corresponding adaptive algorithm. The extension of the proposed adaptive algorithm to the Cahn-Hilliard equation is also discussed. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:204 / 223
页数:20
相关论文
共 54 条
[1]  
Ainsworth M., 2000, PUR AP M-WI
[2]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[3]   ROBUST A PRIORI AND A POSTERIORI ERROR ANALYSIS FOR THE APPROXIMATION OF ALLEN-CAHN AND GINZBURG-LANDAU EQUATIONS PAST TOPOLOGICAL CHANGES [J].
Bartels, Soeren ;
Mueller, Ruediger ;
Ortner, Christoph .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (01) :110-134
[4]   Phase-field simulation of solidification [J].
Boettinger, WJ ;
Warren, JA ;
Beckermann, C ;
Karma, A .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :163-194
[5]  
BRAMBLE JH, 1977, MATH COMPUT, V31, P94, DOI 10.1090/S0025-5718-1977-0431744-9
[6]  
Chen L, 2008, IFEM INNOVATIVE FINI
[7]   An unconditionally gradient stable numerical method for solving the Allen-Cahn equation [J].
Choi, Jeong-Whan ;
Lee, Hyun Geun ;
Jeong, Darae ;
Kim, Junseok .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (09) :1791-1803
[8]   NUMERICAL-ANALYSIS OF A CONTINUUM MODEL OF PHASE-TRANSITION [J].
DU, Q ;
NICOLAIDES, RA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (05) :1310-1322
[9]   Modeling and computation of two phase geometric biomembranes using surface finite elements [J].
Elliott, Charles M. ;
Stinner, Bjoern .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (18) :6585-6612
[10]   Threshold dynamics for the piecewise constant Mumford-Shah functional [J].
Esedoglu, S ;
Tsai, YHR .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (01) :367-384