On Laplacian energy in terms of graph invariants

被引:26
作者
Das, Kinkar Ch. [1 ]
Mojallal, Seyed Ahmad [1 ]
Gutman, Ivan [2 ,3 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
[3] State Univ Novi Pazar, Novi Pazar, Serbia
基金
新加坡国家研究基金会;
关键词
Laplacian eigenvalues; Laplacian energy; Vertex connectivity; Edge connectivity; Vertex cover number; Spanning tree packing number; 1ST ZAGREB INDEX; THRESHOLD GRAPHS; UPPER-BOUNDS; CONJECTURE; NUMBER; TREE;
D O I
10.1016/j.amc.2015.06.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For C being a graph with ti vertices and T11 edges, and with Laplacian eigenvalues mu(1) >= mu(2) >= ... >= mu(n-1) >= mu(n) - 0the Laplacian energy is defined as LE - Sigma(n)(i=1)vertical bar mu(i) - 2 mu/n. Let ci be the largest positive integer such that mu(sigma) >= 2 mu/n. We characterize the graphs satisfying sigma = n - 1. Using this, we obtain lower bounds for LE in terms of n, in, and the first Zagreb index. In addition, we present some upper bounds for LE in terms of graph invariants such as n, maximum degree, vertex cover number, and spanning tree packing number. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 34 条
  • [1] Bondy J. A., 1976, Graduate Texts in Mathematics, V290
  • [2] Bozkurt SB, 2014, MATCH-COMMUN MATH CO, V72, P215
  • [3] A decreasing sequence of upper bounds for the Laplacian energy of a tree
    Carmona, Juan
    Gutman, Ivan
    Tamblay, Nelda Jaque
    Robbiano, Maria
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 446 : 304 - 313
  • [4] The Laplacian energy of threshold graphs and majorization
    Dahl, Geir
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 469 : 518 - 530
  • [5] Das KC, 2014, MATCH-COMMUN MATH CO, V72, P227
  • [6] On Laplacian energy of graphs
    Das, Kinkar Ch.
    Mojallal, Seyed Ahmad
    [J]. DISCRETE MATHEMATICS, 2014, 325 : 52 - 64
  • [7] Das KC, 2013, MATCH-COMMUN MATH CO, V70, P689
  • [8] Das KC, 2013, MATCH-COMMUN MATH CO, V70, P301
  • [10] Unicyclic graphs with equal Laplacian energy
    Fritscher, Eliseu
    Hoppen, Carlos
    Trevisan, Vilmar
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (02) : 180 - 194