Stochastic dynamics of an HIV/AIDS epidemic model with treatment

被引:12
作者
Nsuami, Mozart U. [1 ]
Witbooi, Peter J. [1 ]
机构
[1] Univ Western Cape, Dept Math & Appl Math, Private Bag X17, ZA-7535 Bellville, South Africa
关键词
Stochastic model; HIV; AIDS model; basic reproduction number; boundedness; permanence; STABILITY; PERMANENCE;
D O I
10.2989/16073606.2018.1478908
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a stochastic HIV/AIDS epidemic model with treatment. The model allows for two stages of infection namely the asymptomatic phase and the symptomatic phase. We prove existence of global positive solutions. We show that the solutions are stochastically ultimately bounded and stochastically permanent. We also study asymptotic behaviour of the solution to the stochastic model around the disease-free equilibrium of the underlying deterministic model. Our theoretical results are illustrated by way of numerical simulations.
引用
收藏
页码:605 / 621
页数:17
相关论文
共 22 条
[1]   Optimal multi-dimensional stochastic harvesting with density-dependent prices [J].
Alvarez L.H.R. ;
Lungu E. ;
Øksendal B. .
Afrika Matematika, 2016, 27 (3-4) :427-442
[2]  
[Anonymous], 2017, UNAIDS DAT
[3]   HIV treatment models with time delay [J].
Bachar, M ;
Dorfmayr, A .
COMPTES RENDUS BIOLOGIES, 2004, 327 (11) :983-994
[4]   Assessing the impact of homelessness on HIV/AIDS transmission dynamics [J].
Bhunu, C. P. .
COGENT MATHEMATICS, 2015, 2
[5]   Stability analysis of an HIV/AIDS epidemic model with treatment [J].
Cai, Liming ;
Li, Xuezhi ;
Ghosh, Mini ;
Guo, Baozhu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) :313-323
[6]   A stochastic model of AIDS and condom use [J].
Dalal, Nirav ;
Greenhalgh, David ;
Mao, Xuerong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :36-53
[7]   The dynamics of an HIV/AIDS model with screened disease carriers [J].
Hove-Musekwa, S. D. ;
Nyabadza, F. .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2009, 10 (04) :287-305
[8]   The differential infectivity and staged progression models for the transmission of HIV [J].
Hyman, JM ;
Li, J ;
Stanley, EA .
MATHEMATICAL BIOSCIENCES, 1999, 155 (02) :77-109
[9]   A stochastic modeling of early HIV-1 population dynamics [J].
Kamina, A ;
Makuch, RW ;
Zhao, HY .
MATHEMATICAL BIOSCIENCES, 2001, 170 (02) :187-198
[10]   Comparison of deterministic and stochastic SIRS epidemic model with saturating incidence and immigration [J].
Lahrouz, Aadil ;
Omari, Lahcen ;
Settati, Adel ;
Belmaati, Aziza .
ARABIAN JOURNAL OF MATHEMATICS, 2015, 4 (02) :101-116