Acetaminophen-induced inhibition of Fas receptor-mediated liver cell apoptosis: Mitochondrial dysfunction versus glutathione depletion

被引:74
作者
Knight, TR [1 ]
Jaeschke, H [1 ]
机构
[1] Univ Arkansas Med Sci, Dept Pharmacol & Toxicol, Little Rock, AR 72205 USA
关键词
acetaminophen; allopurinol; apoptosis; Fas receptor; liver failure; mitochondria;
D O I
10.1006/taap.2002.9407
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
We reported previously that acetaminophen overdose interrupts the signaling pathway of Fas receptor-mediated apoptosis. The aim of our study was to investigate the mechanism of this effect. Male C3Heb/FeJ mice received a single dose of acetaminophen (300 mg/kg ip) and/or anti-Fas antibody Jo-2 (0.6 mg/kg iv). Some animals were treated with allopurinol (100 mg/kg po) 18 and 1 h before acetaminophen injection. After 90 min of Jo treatment, there was processing of procaspase-3 and a significant increase in liver caspase-3 activity, which is consistent with apoptotic cell death. Treatment with acetaminophen 2.5 h before Jo inhibited the increase in hepatic caspase-3 activity by preventing the processing of the proenzyme. When administered alone, acetaminophen did not induce caspase-3 activation but caused significant liver injury. Acetaminophen treatment alone caused mitochondrial cytochrome c release, depletion of the hepatic ATP content by 55%, and a 10-fold increase in mitochondrial glutathione disulfide levels. Pretreatment with allopurinol prevented the mitochondrial oxidant stress and liver injury due to acetaminophen toxicity but had no effect on Jo-mediated apoptosis. Allopurinol did not affect the initial glutathione depletion after acetaminophen. However, allopurinol restored the sensitivity of hepatocytes to Fas receptor signaling in acetaminophen-treated animals. Histochemical evaluation of DNA fragmentation with the TUNEL assay showed that acetaminophen eliminated Fas receptor-mediated apoptosis in all hepatocytes not just in the damaged cells of the centrilobular area. Our data suggest that acetaminophen-induced mitochondrial dysfunction and not the initial glutathione depletion is responsible for the interruption of Fas receptor-mediated apoptotic signaling in hepatocytes. © 2002 Elsevier Science (USA).
引用
收藏
页码:133 / 141
页数:9
相关论文
共 37 条
[1]   Protection against Fas receptor-mediated apoptosis in hepatocytes and nonparenchymal cells by a caspase-8 inhibitor in vivo:: Evidence for a postmitochondrial processing of caspase-8 [J].
Bajt, ML ;
Lawson, JA ;
Vonderfecht, SL ;
Gujral, JS ;
Jaeschke, H .
TOXICOLOGICAL SCIENCES, 2000, 58 (01) :109-117
[2]   Differential protection with inhibitors of caspase-8 and caspase-3 in murine models of tumor necrosis factor and Fas receptor-mediated hepatocellular apoptosis [J].
Bajt, ML ;
Vonderfecht, SL ;
Jaeschke, H .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2001, 175 (03) :243-252
[3]   N-ACETYL-PARA-BENZOQUINONE IMINE - A CYTOCHROME-P-450-MEDIATED OXIDATION-PRODUCT OF ACETAMINOPHEN [J].
DAHLIN, DC ;
MIWA, GT ;
LU, AYH ;
NELSON, SD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (05) :1327-1331
[4]   INHIBITION OF MITOCHONDRIAL RESPIRATION IN-VIVO IS AN EARLY EVENT IN ACETAMINOPHEN-INDUCED HEPATOTOXICITY [J].
DONNELLY, PJ ;
WALKER, RM ;
RACZ, WJ .
ARCHIVES OF TOXICOLOGY, 1994, 68 (02) :110-118
[5]   Opening of the mitochondrial permeability transition pore causes matrix expansion and outer membrane rupture in Fas-mediated hepatic apoptosis in mice [J].
Feldmann, G ;
Haouzi, D ;
Moreau, A ;
Durand-Schneider, AM ;
Bringuier, A ;
Berson, A ;
Mansouri, A ;
Fau, D ;
Pessayre, D .
HEPATOLOGY, 2000, 31 (03) :674-683
[6]   IN-SITU DETECTION OF FRAGMENTED DNA (TUNEL ASSAY) FAILS TO DISCRIMINATE AMONG APOPTOSIS, NECROSIS, AND AUTOLYTIC CELL-DEATH - A CAUTIONARY NOTE [J].
GRASLKRAUPP, B ;
RUTTKAYNEDECKY, B ;
KOUDELKA, H ;
BUKOWSKA, K ;
BURSCH, W ;
SCHULTEHERMANN, R .
HEPATOLOGY, 1995, 21 (05) :1465-1468
[7]   Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death [J].
Gross, A ;
Yin, XM ;
Wang, K ;
Wei, MC ;
Jockel, J ;
Millman, C ;
Erdjument-Bromage, H ;
Tempst, P ;
Korsmeyer, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (02) :1156-1163
[8]   Mechanism of cell death during warm hepatic ischemia-reperfusion in rats: Apoptosis or necrosis? [J].
Gujral, JS ;
Bucci, TJ ;
Farhood, A ;
Jaeschke, H .
HEPATOLOGY, 2001, 33 (02) :397-405
[9]  
GUJRAL JS, 2002, IN PRESS TOXICOL SCI, V67
[10]   Dual regulation of caspase activity by hydrogen peroxide: Implications for apoptosis [J].
Hampton, MB ;
Orrenius, S .
FEBS LETTERS, 1997, 414 (03) :552-556