Poisson cohomology in dimension two

被引:21
|
作者
Monnier, P [1 ]
机构
[1] Univ Montpellier 2, Dept Math, F-34095 Montpellier 5, France
关键词
Vector Field; Normal Form; Spectral Sequence; Poisson Structure; Poisson Manifold;
D O I
10.1007/BF02773163
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It, is known that the computation of the Poisson cohomology is closely related to the classification of singularities of Poisson structures. In this paper, we will first look for the normal forms of germs at (0,0) of Poisson structures on K-2 (K = R or C) and recall a result given by Arnold. Then we will compute locally the Poisson cohomology of a particular type of Poisson structure.
引用
收藏
页码:189 / 207
页数:19
相关论文
共 50 条
  • [1] Poisson cohomology in dimension two
    Philippe Monnier
    Israel Journal of Mathematics, 2002, 129 : 189 - 207
  • [2] Poisson cohomology in dimension three.
    Pichereau, A
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (02) : 151 - 154
  • [3] Poisson cohomology of two Fano threefolds
    Mayanskiy, Evgeny
    JOURNAL OF ALGEBRA, 2015, 424 : 21 - 45
  • [4] ON ALMOST POISSON COMMUTATIVITY IN DIMENSION TWO
    Zapolsky, Frol
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2010, 17 : 155 - 160
  • [5] Cominimaxness with respect to ideals of dimension two and local cohomology
    Karimirad, Hamidreza
    Aghapournahr, Moharram
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (05)
  • [6] COHOMOLOGY DIMENSION
    LYUKSEMBURG, LA
    DOKLADY AKADEMII NAUK SSSR, 1975, 220 (06): : 1263 - 1266
  • [7] POISSON COHOMOLOGY OF REGULAR POISSON MANIFOLDS
    XU, P
    ANNALES DE L INSTITUT FOURIER, 1992, 42 (04) : 967 - 988
  • [8] The variational Poisson cohomology
    De Sole, Alberto
    Kac, Victor G.
    JAPANESE JOURNAL OF MATHEMATICS, 2013, 8 (01): : 1 - 145
  • [9] POISSON COHOMOLOGY AND QUANTIZATION
    HUEBSCHMANN, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1990, 408 : 57 - 113
  • [10] Holomorphic Poisson Cohomology
    Chen, Zhuo
    Grandini, Daniele
    Poon, Yat-Sun
    COMPLEX MANIFOLDS, 2015, 2 (01): : 34 - 52