Recognition of Muscle Fatigue Status Based on Improved Wavelet Threshold and CNN-SVM

被引:30
作者
Wang, Junhong [1 ,2 ]
Sun, Yining [1 ,2 ]
Sun, Shaoming [2 ,3 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei Inst Phys Sci, Hefei 230026, Peoples R China
[3] Chinese Acad Sci, Inst Technol Innovat, Hefei 230088, Peoples R China
关键词
Muscles; Fatigue; Feature extraction; Wavelet analysis; Support vector machines; Noise reduction; Training; Convolutional neural network-support vector machine (CNN-SVM); muscle fatigue; sEMG; wavelet threshold; SIGNAL; CLASSIFICATION; TRANSFORM;
D O I
10.1109/ACCESS.2020.3038422
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study proposed a muscle fatigue classification method based on surface electromyography (sEMG) signals to achieve accurate muscle fatigue detection and classification. A total of 20 healthy young participants (14 men and 6 women) were recruited for fatigue testing on a cycle ergometer, and sEMG signals and oxygen uptake were recorded during the test. First, the measured sEMG signals were denoised with an improved wavelet threshold method. Second, the V-slope method was used to identify the ventilation threshold (VT) to reflect the muscle fatigue state. The time- and frequency-domain features of the sEMG signals were extracted, including root mean square, integrated electromyography, median frequency, mean power frequency, and band spectral entropy. Third, the time- and frequency-domain features of the sEMG signals were labeled either "normal" or "fatigued" based on the VT. Finally, the statistical features of 16 participants were selected as the training data set of the Convolutional Neural Network-Support Vector Machine (CNN-SVM), Support Vector Machine, Convolutional Neural Network, and Particle Swarm Optimization-Support Vector Machine algorithms. In addition, the statistical features of the four remaining participants were used as the test data set to analyze the classification accuracy of the four aforementioned algorithms. Experimental results indicated that the denoising effect of the improved wavelet threshold algorithm proposed in this study was satisfactory. The CNN-SVM algorithm achieved accurate muscle fatigue classification and 80.33%-86.69% classification accuracy.
引用
收藏
页码:207914 / 207922
页数:9
相关论文
共 40 条
[1]  
[Anonymous], 2010, JMLR WORKSH C P
[2]   A NEW METHOD FOR DETECTING ANAEROBIC THRESHOLD BY GAS-EXCHANGE [J].
BEAVER, WL ;
WASSERMAN, K ;
WHIPP, BJ .
JOURNAL OF APPLIED PHYSIOLOGY, 1986, 60 (06) :2020-2027
[3]   CHANGES IN MUSCLE CONTRACTILE PROPERTIES AND NEURAL CONTROL DURING HUMAN MUSCULAR FATIGUE [J].
BIGLANDRITCHIE, B ;
WOODS, JJ .
MUSCLE & NERVE, 1984, 7 (09) :691-699
[4]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[5]  
Cao Ang, 2018, Journal of Computer Applications, V38, P1801, DOI 10.11772/j.issn.1001-9081.2017102549
[6]   Adaptive wavelet thresholding for image denoising and compression [J].
Chang, SG ;
Yu, B ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (09) :1532-1546
[7]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[8]   Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning [J].
Cote-Allard, Ulysse ;
Fall, Cheikh Latyr ;
Drouin, Alexandre ;
Campeau-Lecours, Alexandre ;
Gosselin, Clement ;
Glette, Kyrre ;
Laviolette, Francois ;
Gosselin, Benoit .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (04) :760-771
[9]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[10]   THE RELATION BETWEEN CRITICAL POWER AND NEUROMUSCULAR FATIGUE AS ESTIMATED FROM ELECTRO-MYOGRAPHIC DATA [J].
DEVRIES, HA ;
MORITANI, T ;
NAGATA, A ;
MAGNUSSEN, K .
ERGONOMICS, 1982, 25 (09) :783-791