The 'PhenoBox', a flexible, automated, open-source plant phenotyping solution

被引:40
作者
Czedik-Eysenberg, Angelika [1 ]
Seitner, Sebastian [1 ]
Gueldener, Ulrich [2 ]
Koemeda, Stefanie [3 ]
Jez, Jakub [3 ]
Colombini, Martin [4 ]
Djamei, Armin [1 ]
机构
[1] Austrian Acad Sci, GMI, Vienna BioCtr VBC, Dr Bohr Gasse 3, A-1030 Vienna, Austria
[2] Tech Univ Munich, Dept Genome Oriented Bioinformat, Wissensch Zentrum Weihenstephan, Freising Weihenstephan, Germany
[3] VBCF, Dr Bohr Gasse 3, A-1030 Vienna, Austria
[4] Vienna BioCtr VBC, Workshop, Res Inst Mol Pathol IMP, Campus Vienna Bioctr 1, A-1030 Vienna, Austria
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
infection prediction; open source; PhenoBox; PhenoPipe; plant pathogens; plant phenotyping; salt stress; smut fungi; USTILAGO-MAYDIS; FUNGAL ENDOPHYTE; MAIZE; HOST; GENOME; GROWTH; MECHANISMS; INFECTION; DEFENSE; STRATEGIES;
D O I
10.1111/nph.15129
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
There is a need for flexible and affordable plant phenotyping solutions for basic research and plant breeding. We demonstrate our open source plant imaging and processing solution ('PhenoBox' / 'PhenoPipe') and provide construction plans, source code and documentation to rebuild the system. Use of the PhenoBoxis exemplified by studying infection of the model grass Brachypodium distachyon by the head smut fungus Ustilago bromivora, comparing phenotypic responses of maize to infection with a solopathogenic Ustilago maydis (corn smut) strain and effector deletion strains, and studying salt stress response in Nicotiana benthamiana. In U.bromivora-infected grass, phenotypic differences between infected and uninfected plants were detectable weeks before qualitative head smut symptoms. Based on this, we could predict the infection outcome for individual plants with high accuracy. Using a PhenoPipe module for calculation of multi-dimensional distances from phenotyping data, we observe a time after infection-dependent impact of U.maydis effector deletion strains on phenotypic response in maize. The PhenoBox/PhenoPipe system is able to detect established salt stress responses in N.benthamiana. We have developed an affordable, automated, open source imaging and data processing solution that can be adapted to various phenotyping applications in plant biology and beyond.
引用
收藏
页码:808 / 823
页数:16
相关论文
共 61 条
[1]   Mechanisms and strategies of plant defense against Botrytis cinerea [J].
AbuQamar, Synan ;
Moustafa, Khaled ;
Lam-Son Phan Tran .
CRITICAL REVIEWS IN BIOTECHNOLOGY, 2017, 37 (02) :262-274
[2]   Digital image processing techniques for detecting, quantifying and classifying plant diseases [J].
Arnal Barbedo, Jayme Garcia .
SPRINGERPLUS, 2013, 2 :1-12
[3]   An Arabidopsis Mitochondrial Uncoupling Protein Confers Tolerance to Drought and Salt Stress in Transgenic Tobacco Plants [J].
Begcy, Kevin ;
Mariano, Eduardo D. ;
Mattiello, Lucia ;
Nunes, Alessandra V. ;
Mazzafera, Paulo ;
Maia, Ivan G. ;
Menossi, Marcelo .
PLOS ONE, 2011, 6 (08)
[4]   On the use of depth camera for 3D phenotyping of entire plants [J].
Chene, Yann ;
Rousseau, David ;
Lucidarme, Philippe ;
Bertheloot, Jessica ;
Caffier, Valerie ;
Morel, Philippe ;
Belin, Etienne ;
Chapeau-Blondeau, Francois .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2012, 82 :122-127
[5]   Costs of fungal endophyte infection in Lolium perenne genotypes from Eurasia and North Africa under extreme resource limitation [J].
Cheplick, Gregory P. .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2007, 60 (02) :202-210
[6]   Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement [J].
Cobb, Joshua N. ;
DeClerck, Genevieve ;
Greenberg, Anthony ;
Clark, Randy ;
McCouch, Susan .
THEORETICAL AND APPLIED GENETICS, 2013, 126 (04) :867-887
[7]   Measures for interoperability of phenotypic data: minimum information requirements and formatting [J].
Cwiek-Kupczynska, Hanna ;
Altmann, Thomas ;
Arend, Daniel ;
Arnaud, Elizabeth ;
Chen, Dijun ;
Cornut, Guillaume ;
Fiorani, Fabio ;
Frohmberg, Wojciech ;
Junker, Astrid ;
Klukas, Christian ;
Lange, Matthias ;
Mazurek, Cezary ;
Nafissi, Anahita ;
Neveu, Pascal ;
van Oeveren, Jan ;
Pommier, Cyril ;
Poorter, Hendrik ;
Rocca-Serra, Philippe ;
Sansone, Susanna-Assunta ;
Scholz, Uwe ;
van Schriek, Marco ;
Seren, Umit ;
Usadel, Bjorn ;
Weise, Stephan ;
Kersey, Paul ;
Krajewski, Pawel .
PLANT METHODS, 2016, 12
[8]   The Top 10 fungal pathogens in molecular plant pathology [J].
Dean, Ralph ;
Van Kan, Jan A. L. ;
Pretorius, Zacharias A. ;
Hammond-Kosack, Kim E. ;
Di Pietro, Antonio ;
Spanu, Pietro D. ;
Rudd, Jason J. ;
Dickman, Marty ;
Kahmann, Regine ;
Ellis, Jeff ;
Foster, Gary D. .
MOLECULAR PLANT PATHOLOGY, 2012, 13 (04) :414-430
[9]   Metabolic priming by a secreted fungal effector [J].
Djamei, Armin ;
Schipper, Kerstin ;
Rabe, Franziska ;
Ghosh, Anupama ;
Vincon, Volker ;
Kahnt, Joerg ;
Osorio, Sonia ;
Tohge, Takayuki ;
Fernie, Alisdair R. ;
Feussner, Ivo ;
Feussner, Kirstin ;
Meinicke, Peter ;
Stierhof, York-Dieter ;
Schwarz, Heinz ;
Macek, Boris ;
Mann, Matthias ;
Kahmann, Regine .
NATURE, 2011, 478 (7369) :395-+
[10]   Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance [J].
Dodds, Peter N. ;
Rafiqi, Maryam ;
Gan, Pamela H. P. ;
Hardham, Adrienne R. ;
Jones, David A. ;
Ellis, Jeffrey G. .
NEW PHYTOLOGIST, 2009, 183 (04) :993-999