Lattice point problems and values of quadratic forms

被引:55
作者
Götze, F [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
D O I
10.1007/s00222-004-0366-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For d-dimensional ellipsoids E with dgreater than or equal to5 we show that the number of lattice points in rE is approximated by the volume of rE, as r tends to infinity, up to an error of order O(r(d-2)) for general ellipsoids and up to an error of order o(r(d-2)) for irrational ones. The estimate refines earlier bounds of the same order for dimensions dgreater than or equal to9. As an application a conjecture of Davenport and Lewis about the shrinking of gaps between large consecutive values of Q[m],mis an element ofZ(d) of positive definite irrational quadratic forms Q of dimension dgreater than or equal to5 is proved. Finally, we provide explicit bounds for errors in terms of certain Minkowski minima of convex bodies related to these quadratic forms.
引用
收藏
页码:195 / 226
页数:32
相关论文
共 29 条
[1]  
Bentkus V, 1997, ACTA ARITH, V80, P101
[2]   Lattice point problems and distribution of values of quadratic forms [J].
Bentkus, V ;
Götze, F .
ANNALS OF MATHEMATICS, 1999, 150 (03) :977-1027
[3]  
Cassels J. W. S., 1959, INTRO GEOMETRY NUMBE
[4]   INDEFINITE QUADRATIC POLYNOMIALS OF SMALL SIGNATURE [J].
COOK, RJ ;
RAGHAVAN, S .
MONATSHEFTE FUR MATHEMATIK, 1984, 97 (03) :169-176
[5]  
Davenport H., 1972, ACTA ARITH, V22, P87
[6]  
DAVENPORT H, 1958, P LOND MATH SOC, V8, P109, DOI DOI 10.1112/PLMS/S3-8.1.109
[7]   Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture [J].
Eskin, A ;
Margulis, G ;
Mozes, S .
ANNALS OF MATHEMATICS, 1998, 147 (01) :93-141
[8]  
FRICKER F, 1982, EINFUHRUNG GITTERPUN
[9]  
Gotze F., 2004, ST PETERSBURG MATH J, V15, P81
[10]  
HLAWKA E, 1950, MONATSH MATH, V54, P81, DOI DOI 10.1007/BF01304101