Classical symmetries, travelling wave solutions and conservation laws of a generalized Fornberg-Whitham equation

被引:12
作者
Camacho, J. C. [1 ]
Rosa, M. [1 ]
Gandarias, M. L. [1 ]
Bruzon, M. S. [1 ]
机构
[1] Univ Cadiz, Cadiz, Spain
关键词
Partial differential equations; Symmetries; Conservation laws;
D O I
10.1016/j.cam.2016.11.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a generalized Fornberg-Whitham Equation. We make an analysis of the symmetries of this equation using the classical Lie symmetry method. Symmetry reductions are derived from an optimal system of subalgebras and lead to ordinary differential equations. We obtain travelling wave solutions. In addition, using the general multiplier method, new conservation laws of this equation are determined. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 21 条
  • [1] Anco G. B. S. C., 2002, EUR J APPL MATH, V41, P567
  • [2] Anco G. B. S. C., 2002, EUR J APPL MATH, V13, P545
  • [3] Anco I. F. S. C., 2015, J MATH PHYS, V56
  • [4] Anco S., ARXIV161102330V1MATH
  • [5] Anco S. C., 2016, FIELDS I CO IN PRESS
  • [6] Direct construction of conservation laws from field equations
    Anco, SC
    Bluman, G
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (15) : 2869 - 2873
  • [7] Group-invariant solutions of semilinear Schrodinger equations in multi-dimensions
    Anco, Stephen C.
    Feng, Wei
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [8] Traveling waves and conservation laws for complex mKdV-type equations
    Anco, Stephen C.
    Mohiuddin, Mohammad
    Wolf, Thomas
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (02) : 679 - 698
  • [9] [Anonymous], 2020, Introduction to Partial Differential Equations
  • [10] Bluman GW, 2009, APPL MATH SCI, V168