Estimating the distribution of random parameters in a diffusion equation forward model for a transdermal alcohol biosensor

被引:16
|
作者
Sirlanci, Melike [1 ]
Luczak, Susan E. [2 ]
Fairbairn, Catharine E. [3 ]
Kang, Dahyeon [3 ]
Pan, Ruoxi [4 ]
Yu, Xin [4 ]
Rosen, I. Gary [4 ]
机构
[1] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[2] Univ Southern Calif, Dept Psychol, Los Angeles, CA 90089 USA
[3] Univ Illinois, Dept Psychol, Champaign, IL 61820 USA
[4] Univ Southern Calif, Dept Math, Modeling & Simulat Lab, Los Angeles, CA 90089 USA
关键词
Distribution estimation; Biosensor data; Distributed parameter systems; Random parameters; Blood alcohol concentration; Transdermal alcohol concentration; BLIND DECONVOLUTION; INVERSE PROBLEMS; SYSTEMS;
D O I
10.1016/j.automatica.2019.04.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We estimate the distribution of random parameters in a distributed parameter model with unbounded input and output for the transdermal transport of ethanol. The underlying model is a diffusion equation with input: blood alcohol concentration and output: transdermal alcohol concentration. We reformulate the dynamical system so that the random parameters are treated as additional space variables. When the distribution to be estimated is absolutely continuous with a joint density, estimating the distribution is equivalent to estimating the diffusivity in a multi-dimensional diffusion equation. Well-established finite dimensional approximation schemes, functional analytic based convergence arguments, optimization techniques, and computational methods may be employed. We use our technique to estimate a bivariate normal distribution based on data for multiple drinking episodes from a single subject. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:101 / 109
页数:9
相关论文
共 50 条