Riemann-Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg-de Vries equation on the half-line

被引:63
作者
Hu, Bei-Bei [1 ,2 ]
Xia, Tie-Cheng [1 ]
Ma, Wen-Xiu [3 ,4 ,5 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Chuzhou Univ, Sch Math & Finance, Chuzhou 239000, Anhui, Peoples R China
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Dept Math Sci, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
[5] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Riemann-Hilbert problem; Two-component mKdV equation; Initial-boundary value problem; Unified transform method; NONLINEAR SCHRODINGER-EQUATION; EVOLUTION-EQUATIONS; SOLITON-SOLUTIONS; KDV;
D O I
10.1016/j.amc.2018.03.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we investigate the two-component modified Korteweg-de Vries (mKdV) equation, which is a complete integrable system, and accepts a generalization of 4 x 4 matrix Ablowitz-Kaup-Newell-Segur (AKNS)-type Lax pair. By using of the unified transform approach, the initial-boundary value (IBV) problem of the two-component mKdV equation associated with a 4 x 4 matrix Lax pair on the half-line will be analyzed. Supposing that the solution {u(1)(x, t), u(2)(x, t)) of the two-component mKdV equation exists, we will show that it can be expressed in terms of the unique solution of a 4 x 4 matrix Riemann-Hilbert problem formulated in the complex lambda-plane. Moreover, we will prove that some spectral functions s(lambda) and S(lambda) are not independent of each other but meet the global relationship. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:148 / 159
页数:12
相关论文
共 38 条
[1]  
[Anonymous], 2013, P ROY SOC A-MATH PHY, DOI DOI 10.1098/RSPA.2013.0068
[2]   GENERALIZED KDV AND MKDV EQUATIONS ASSOCIATED WITH SYMMETRICAL-SPACES [J].
ATHORNE, C ;
FORDY, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (06) :1377-1386
[3]   A Riemann-Hilbert Approach for the Novikov Equation [J].
Boutet De Monvel, Anne ;
Shepelsky, Dmitry ;
Zielinski, Lech .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
[4]   THE mKdV EQUATION ON THE HALF-LINE [J].
De Monvel, A. Boutet ;
Fokas, A. S. ;
Shepelsky, D. .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2004, 3 (02) :139-164
[5]   The Ostrovsky-Vakhnenko equation by a Riemann-Hilbert approach [J].
de Monvel, Anne Boutet ;
Shepelsky, Dmitry .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (03)
[6]   A Riemann-Hilbert approach for the Degasperis-Procesi equation [J].
de Monvel, Anne Boutet ;
Shepelsky, Dmitry .
NONLINEARITY, 2013, 26 (07) :2081-2107
[7]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[8]   Integrable Nonlinear evolution equations on the half-line [J].
Fokas, AS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 230 (01) :1-39
[9]   The nonlinear Schrodinger equation on the half-line [J].
Fokas, AS ;
Its, AR ;
Sung, LY .
NONLINEARITY, 2005, 18 (04) :1771-1822
[10]   A unified transform method for solving linear and certain nonlinear PDEs [J].
Fokas, AS .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1962) :1411-1443