Accepting runs in a two-way finite automaton

被引:2
作者
Ibarra, Oscar H. [1 ]
Dang, Zhe [2 ,3 ]
Li, Qin [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[2] Anhui Univ Technol, Sch Comp, Maanshan, Anhui, Peoples R China
[3] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA
关键词
Two-way automata; Accepting run; Sampling; DECISION-PROBLEMS; MULTICOUNTER MACHINES;
D O I
10.1016/j.ic.2018.03.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An accepting run in a two-way finite automaton M is a sequence of states that M enters during some accepting computation. The set of all such runs is denoted by L-run,L-M. We study the complexity of L-run,(M) when Mis a 2NFA (2DFA). We also look at the complexity of "position sampling" (the sequence of states that Menters in specified positions of some accepted input) in a 2NFA. In particular, we give some language properties of sampled runs of 2NFAs augmented with restricted unbounded storage. (C) 2018 Published by Elsevier Inc.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 12 条
[1]   REVERSAL-BOUNDED MULTIPUSHDOWN MACHINES [J].
BAKER, BS ;
BOOK, RV .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1974, 8 (03) :315-332
[2]  
Cewei Cui, 2013, Language and Automata Theory and Applications. 7th International Conference, LATA 2013. Proceedings, P226, DOI 10.1007/978-3-642-37064-9_21
[3]  
Dang Z., 2014, EMERGENCE COMPLEXITY, V12
[4]   1-WAY STACK AUTOMATA [J].
GINSBURG, S ;
GREIBACH, SA ;
HARRISON, MA .
JOURNAL OF THE ACM, 1967, 14 (02) :389-&
[5]   DETERMINISTIC CONTEXT FREE LANGUAGES [J].
GINSBURG, S ;
GREIBACH, S .
INFORMATION AND CONTROL, 1966, 9 (06) :620-&
[6]   THE COMPLEXITY OF DECISION-PROBLEMS FOR FINITE-TURN MULTICOUNTER MACHINES [J].
GURARI, EM ;
IBARRA, OH .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1981, 22 (02) :220-229
[7]   Some decision problems concerning semilinearity and commutation [J].
Harju, T ;
Ibarra, O ;
Karhumäki, J ;
Salomaa, A .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2002, 65 (02) :278-294
[8]   NEW DECIDABILITY RESULTS CONCERNING 2-WAY COUNTER MACHINES [J].
IBARRA, OH ;
JIANG, T ;
TRAN, N ;
WANG, H .
SIAM JOURNAL ON COMPUTING, 1995, 24 (01) :123-137
[9]   REVERSAL-BOUNDED MULTICOUNTER MACHINES AND THEIR DECISION PROBLEMS [J].
IBARRA, OH .
JOURNAL OF THE ACM, 1978, 25 (01) :116-133
[10]  
Ibarra OH, 2014, LECT NOTES COMPUT SC, V8614, P5, DOI 10.1007/978-3-319-09704-6_2