Vapour solid reaction growth of SnO2 nanorods as an anode material for Li ion batteries

被引:4
作者
Hsu, Kai-Chieh [1 ]
Lee, Chi-Young [2 ]
Chiu, Hsin-Tien [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Chem, Hsinchu 30010, Taiwan
[2] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
关键词
TIN-BASED INTERMETALLICS; ONE-POT SYNTHESIS; LITHIUM; NANOTUBES; NANOSHEETS; GRAPHITE;
D O I
10.1039/c4ra02322f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Via a vapour-solid reaction growth (VSRG) pathway, phase-segregated SnO2 nanorods (NRs, length 1-2 mu m and diameter 10-20 nm) were developed in a matrix of CaCl2 salt by reacting CaO particles with a flowing mixture of SnCl4 and Ar gases at elevated temperatures. The SnO2 NRs were investigated as a potential anode material for Li-ion batteries (LIBs). A half-cell constructed from the as-fabricated SnO2 electrode and a Li foil exhibited a reversible capacity 435 mA h g(-1) after one hundred cycles at a current density of 100 mA g(-1) (0.13 C). The SnO2 NRs exhibited much better Li storage properties, higher reversible capacity and cyclic capacity retention after extended cycling, than commercial SnO2 particles did. The improved electrochemical performance is attributed to the presence of an inactive amorphous byproduct matrix, which contains Li2O, the decomposed electrolyte, and the solid electrolyte interphase (SEI), among the reduced NRs. The matrix probably buffered and reduced the stress caused by the volume change of the electrode during the charge-discharge cyclings.
引用
收藏
页码:26115 / 26121
页数:7
相关论文
共 50 条
  • [21] Carbon aerogel/SnO2 as an advanced anode for sodium-ion batteries
    Liao, Ang
    Pan, Yong
    Lei, Weixin
    Luo, Zhenya
    Hu, Jiaqing
    Pan, Junan
    Cheng, Juanjuan
    FUNCTIONAL MATERIALS LETTERS, 2020, 13 (06)
  • [22] Hydrothermal synthesis of shape-controlled SnO as anode material for Li-ion batteries
    Cheng, Yayi
    Huang, Jianfeng
    Li, Jiayin
    Cao, Liyun
    Qi, Hui
    MICRO & NANO LETTERS, 2018, 13 (02): : 257 - 260
  • [23] Effect of the sheet thickness on the electrochemical performance of 2-D SnO2 nanomaterial as Li ion battery anode material
    Wei, Wei
    Huang, Weifeng
    Yang, Zhao
    Guo, Lin
    Wu, Ziyu
    MECHANICAL SCIENCE AND ENGINEERING IV, 2014, 472 : 720 - +
  • [24] Morphology-Controlled Synthesis of SnO2 as Lithium Ion Batteries Anode Materials
    Wang Yali
    Yu Jing
    Li Rong
    Zhen Qiang
    PROGRESS IN CHEMISTRY, 2012, 24 (11) : 2132 - 2142
  • [25] Electrochemical properties of SnO2/carbon composite materials as anode material for lithium-ion batteries
    Wang, Jie
    Zhao, Hailei
    Liu, Xiaotong
    Wang, Jing
    Wang, Chunmei
    ELECTROCHIMICA ACTA, 2011, 56 (18) : 6441 - 6447
  • [26] Design and synthesis of graphene/SnO2/polyacrylamide nanocomposites as anode material for lithium-ion batteries
    Wan, Yuanxin
    Wang, Tianyi
    Lu, Hongyan
    Xu, Xiaoqian
    Zuo, Chen
    Wang, Yong
    Teng, Chao
    RSC ADVANCES, 2018, 8 (21): : 11744 - 11748
  • [27] Facile encapsulation of nanosized SnO2 particles in carbon nanotubes as an efficient anode of Li-ion batteries
    Liu, Xin
    Wu, Minghao
    Li, Mingrun
    Pan, Xiulian
    Chen, Jian
    Bao, Xinhe
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (33) : 9527 - 9535
  • [28] Assembled hollow and core-shell SnO2 microspheres as anode materials for Li-ion batteries
    Liu, Ruiqing
    Li, Ning
    Xia, Guofeng
    Li, Deyu
    Wang, Chen
    Xiao, Ning
    Tian, Dong
    Wu, Gang
    MATERIALS LETTERS, 2013, 93 : 243 - 246
  • [29] Sn/SnO2/Mwcnt composite anode and electrochemical impedance spectroscopy studies for Li-ion batteries
    Alaf, Mirac
    Tocoglu, Ubeyd
    Kayis, Fuat
    Akbulut, Hatem
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2016, 24 (10) : 630 - 634
  • [30] A facile method for in-situ synthesis of SnO2/graphene as a high performance anode material for lithium-ion batteries
    Wu, Guiliang
    Wu, Mingbo
    Wang, Ding
    Yin, Linghong
    Ye, Jiashun
    Deng, Shenzhen
    Zhu, Zhiyuan
    Ye, Wenjun
    Li, Zhongtao
    APPLIED SURFACE SCIENCE, 2014, 315 : 400 - 406