Uniform K-stability for extremal metrics on tone varieties

被引:14
作者
Chen, Bohui [1 ,2 ]
Li, An-Min [1 ,2 ]
Sheng, Li [2 ]
机构
[1] Sichuan Univ, Dept Math, Yangtze Ctr Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
关键词
Uniform K-stability; Tone varieties; SCALAR CURVATURE; TORIC MANIFOLDS; EQUATION;
D O I
10.1016/j.jde.2014.05.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that for toric varieties the uniform K-stability is a necessary condition for the existence of extremal metrics. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1487 / 1500
页数:14
相关论文
共 17 条
  • [1] Chen B., ARXIV10082607
  • [2] Chen B., NOTATION UNIFO UNPUB
  • [3] Chen B. H., ARXIV10082606
  • [4] Interior regularity on the Abreu equation
    Chen, Bo Hui
    Li, An-Min
    Sheng, Li
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (01) : 33 - 38
  • [5] Donaldson SK, 2005, COLLECT MATH, V56, P103
  • [6] Donaldson SK, 2002, J DIFFER GEOM, V62, P289
  • [7] Li A.-M., 2010, Affine Bernstein Problems and Monge-Ampere Equations
  • [8] Relative K-stability of extremal metrics
    Stoppa, Jacopo
    Szekelyhidi, Gabor
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (04) : 899 - 909
  • [9] Szekelyhidi G., 2006, THESIS IMPERIAL COLL
  • [10] Extremal metrics and K-stability
    Szekelyhidi, Gabor
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 76 - 84