Uniform K-stability for extremal metrics on tone varieties

被引:14
作者
Chen, Bohui [1 ,2 ]
Li, An-Min [1 ,2 ]
Sheng, Li [2 ]
机构
[1] Sichuan Univ, Dept Math, Yangtze Ctr Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
关键词
Uniform K-stability; Tone varieties; SCALAR CURVATURE; TORIC MANIFOLDS; EQUATION;
D O I
10.1016/j.jde.2014.05.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that for toric varieties the uniform K-stability is a necessary condition for the existence of extremal metrics. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1487 / 1500
页数:14
相关论文
共 17 条
[1]  
Chen B., ARXIV10082607
[2]  
Chen B., NOTATION UNIFO UNPUB
[3]  
Chen B. H., ARXIV10082606
[4]   Interior regularity on the Abreu equation [J].
Chen, Bo Hui ;
Li, An-Min ;
Sheng, Li .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (01) :33-38
[5]  
Donaldson SK, 2005, COLLECT MATH, V56, P103
[6]  
Donaldson SK, 2002, J DIFFER GEOM, V62, P289
[7]  
Li A.-M., 2010, Affine Bernstein Problems and Monge-Ampere Equations
[8]   Relative K-stability of extremal metrics [J].
Stoppa, Jacopo ;
Szekelyhidi, Gabor .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (04) :899-909
[9]  
Szekelyhidi G., 2006, THESIS IMPERIAL COLL
[10]   Extremal metrics and K-stability [J].
Szekelyhidi, Gabor .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :76-84