Fabrication of optical microcavities with femtosecond laser pulses

被引:0
作者
Lin, Jintian [1 ]
Song, Jiangxin [1 ]
Tang, Jialei [1 ]
Fang, Wei [2 ]
Sugioka, Koji
Cheng, Ya [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, POB 800-211, Shanghai 201800, Peoples R China
[2] Zhejiang Univ, State Key Lab Modern Opt Instrument, Dept Opt Engn, Hangzhou 310027, Zhejiang, Peoples R China
来源
LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XVI | 2014年 / 8960卷
关键词
femtosecond laser; direct writing; three dimensional; microcavity; glass; crystal; GLASS; MICROLASERS; RESONANCES; EMISSION; CHANNELS;
D O I
10.1117/12.2041353
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report on fabrication of three-dimensional (3D) high-quality (Q) whispering-gallery-mode microcavities by femtosecond laser micromachining. The main fabrication procedures include the formation of on-chip freestanding microdisk through selective material removal by femtosecond laser pulses, followed by surface smoothing processes (CO2 laser reflow for amorphous glass and focused ion beam (FIB) sidewall milling for crystalline materials) to improve the Q factors. Fused silica microcavities with 3D geometries are demonstrated with Q factors exceeding 10(6). A microcavity laser based on Nd:glass has been fabricated, showing a threshold as low as 69 mu W via free space continuous-wave optical excitation at the room temperature. CaF2 crystalline microcavities with Q factor of similar to 4.2x10(4) have also been demonstrated. This technique allows us to fabricate 3D high-Q microcavities in various transparent materials such as glass and crystals, which will benefit a broad spectrum of applications such as nonlinear optics, quantum optics, and bio-sensing.
引用
收藏
页数:6
相关论文
共 36 条
[1]   Observation of strong coupling between one atom and a monolithic microresonator [J].
Aoki, Takao ;
Dayan, Barak ;
Wilcut, E. ;
Bowen, W. P. ;
Parkins, A. S. ;
Kippenberg, T. J. ;
Vahala, K. J. ;
Kimble, H. J. .
NATURE, 2006, 443 (7112) :671-674
[2]   Ultra-high-Q toroid microcavity on a chip [J].
Armani, DK ;
Kippenberg, TJ ;
Spillane, SM ;
Vahala, KJ .
NATURE, 2003, 421 (6926) :925-928
[3]   Low-roughness active microdisk resonators fabricated by focused ion beam [J].
Barea, L. A. M. ;
Vallini, F. ;
Vaz, A. R. ;
Mialichi, J. R. ;
Frateschi, N. C. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (06) :2979-2981
[4]   Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching [J].
Bellouard, Y ;
Said, A ;
Dugan, M ;
Bado, P .
OPTICS EXPRESS, 2004, 12 (10) :2120-2129
[5]   Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum [J].
Brasselet, Etienne ;
Malinauskas, Mangirdas ;
Zukauskas, Albertas ;
Juodkazis, Saulius .
APPLIED PHYSICS LETTERS, 2010, 97 (21)
[6]   Visible continuous emission from a silica microphotonic device by third-harmonic generation [J].
Carmon, Tal ;
Vahala, Kerry J. .
NATURE PHYSICS, 2007, 3 (06) :430-435
[7]   Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining [J].
Cheng, Y. ;
Tsai, H. L. ;
Sugioka, K. ;
Midorikawa, K. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 85 (01) :11-14
[8]   Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing [J].
Cheng, Y ;
Sugioka, K ;
Midorikawa, K .
OPTICS LETTERS, 2004, 29 (17) :2007-2009
[9]   Optical frequency comb generation from a monolithic microresonator [J].
Del'Haye, P. ;
Schliesser, A. ;
Arcizet, O. ;
Wilken, T. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE, 2007, 450 (7173) :1214-1217
[10]   High-power directional emission from microlasers with chaotic resonators [J].
Gmachl, C ;
Capasso, F ;
Narimanov, EE ;
Nöckel, JU ;
Stone, AD ;
Faist, J ;
Sivco, DL ;
Cho, AY .
SCIENCE, 1998, 280 (5369) :1556-1564