Hom-Malcev superalgebras

被引:5
作者
Nan, Jizhu [1 ]
Wang, Chunyue [1 ,2 ]
Zhang, Qingcheng [3 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Jilin Teachers Inst Engn & Technol, Sch Appl Sci, Changchun 130052, Peoples R China
[3] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Hom-Malcev superalgebra; Hom-Malcev operator; representation; central extension; double extension; LIE-ALGEBRAS;
D O I
10.1007/s11464-014-0351-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hom-Malcev superalgebras can be considered as a deformation of Malcev superalgebras. We give the definition of Hom-Malcev superalgebras. Moreover, we characterize the Hom-Malcev operator and the representation of Hom-Malcev superalgebras. Finally, we study the central extension and the double extension of Hom-Malcev superalgebras.
引用
收藏
页码:567 / 584
页数:18
相关论文
共 18 条
  • [1] Quadratic Malcev superalgebras
    Albuquerque, H
    Benayadi, S
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 187 (1-3) : 19 - 45
  • [2] ENGELS THEOREM FOR MALCEV SUPERALGEBRAS
    ALBUQUERQUE, H
    ELDUQUE, A
    [J]. COMMUNICATIONS IN ALGEBRA, 1994, 22 (14) : 5689 - 5701
  • [3] MALCEV SUPERALGEBRAS WITH TRIVIAL NUCLEUS
    ALBUQUERQUE, H
    ELDUQUE, A
    [J]. COMMUNICATIONS IN ALGEBRA, 1993, 21 (09) : 3147 - 3164
  • [4] Albuquerque H., 1996, Algebra and Logic, V35, P351, DOI [10.1007/BF02366395, DOI 10.1007/BF02366395]
  • [5] QUADRATIC MALCEV SUPERALGEBRAS WITH REDUCTIVE EVEN PART
    Albuquerque, Helena
    Barreiro, Elisabete
    Benayadi, Said
    [J]. COMMUNICATIONS IN ALGEBRA, 2010, 38 (02) : 785 - 797
  • [6] Horn-Lie superalgebras and Horn-Lie admissible superalgebras
    Ammar, Faouzi
    Makhlouf, Abdenacer
    [J]. JOURNAL OF ALGEBRA, 2010, 324 (07) : 1513 - 1528
  • [7] ON A CLASS OF MALCEV SUPERALGEBRAS
    ELDUQUE, A
    [J]. JOURNAL OF ALGEBRA, 1995, 173 (02) : 237 - 252
  • [8] IRREDUCIBLE NON-LIE MODULES FOR MALCEV SUPERALGEBRAS
    ELDUQUE, A
    SHESTAKOV, IP
    [J]. JOURNAL OF ALGEBRA, 1995, 173 (03) : 622 - 637
  • [9] Elhamdadi M., 2011, Algebras Groups Geom, V28, P117
  • [10] Deformations of Lie algebras using σ-derivations
    Hartwig, JT
    Larsson, D
    Silvestrov, SD
    [J]. JOURNAL OF ALGEBRA, 2006, 295 (02) : 314 - 361