On Harnack inequalities and optimal transportation

被引:0
作者
Bakry, Dominique [1 ]
Gentil, Ivan [1 ]
Ledoux, Michel [2 ]
机构
[1] Univ Toulouse Paul Sebatier, Inst Math Toulouse, F-31062 Toulouse, France
[2] Univ Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Lyon, France
关键词
METRIC-MEASURE-SPACES; CURVATURE-DIMENSION CONDITION; RICCI CURVATURE; WASSERSTEIN DISTANCE; EULERIAN CALCULUS; EQUATIONS; GEOMETRY; HYPERCONTRACTIVITY; CONTRACTION; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop connections between Harnack inequalities for the heat flow of diffusion operators with curvature bounded from below and optimal transportation. Through heat kernel inequalities, a new isoperimetric-type Harnack inequality is emphasized. Commutation properties between the heat and Hopf-Lax semigroups are developed consequently, providing direct access to heat flow contraction in Wasserstein spaces
引用
收藏
页码:705 / 727
页数:23
相关论文
共 50 条
[31]   Rectifiability of Optimal Transportation Plans [J].
McCann, Robert J. ;
Pass, Brendan ;
Warren, Micah .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (04) :924-934
[32]   Optimal transportation, topology and uniqueness [J].
Ahmad, Najma ;
Kim, Hwa Kil ;
McCann, Robert J. .
BULLETIN OF MATHEMATICAL SCIENCES, 2011, 1 (01) :13-32
[33]   Differential Harnack inequalities for semilinear parabolic equations on RCD*(K, N) metric measure spaces [J].
Lu, Zhihao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 237
[34]   Elliptic Harnack inequalities for symmetric non-local Dirichlet forms [J].
Chen, Zhen-Qing ;
Kumagai, Takashi ;
Wang, Jian .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 125 :1-42
[35]   Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups [J].
Da Prato, Giuseppe ;
Roeckner, Michael ;
Wang, Feng-Yu .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (04) :992-1017
[36]   Liouville theorems and Harnack inequalities for Allen-Cahn type equation [J].
Lu, Zhihao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 244
[37]   Applications of Boundary Harnack Inequalities for p Harmonic Functions and Related Topics [J].
Lewis, J. .
REGULARITY ESTIMATES FOR NONLINEAR ELLIPTIC AND PARABOLIC PROBLEMS: CETRARO, ITALY 2009, 2012, 2045 :1-72
[38]   Harnack inequalities for critical 4-manifolds with a Ricci curvature bound [J].
Weber, Brian .
NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 :1395-1415
[39]   On the regularity of solutions of optimal transportation problems [J].
Loeper, Gregoire .
ACTA MATHEMATICA, 2009, 202 (02) :241-283
[40]   Optimal Transportation Between Unequal Dimensions [J].
McCann, Robert J. ;
Pass, Brendan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 238 (03) :1475-1520