On Harnack inequalities and optimal transportation

被引:0
作者
Bakry, Dominique [1 ]
Gentil, Ivan [1 ]
Ledoux, Michel [2 ]
机构
[1] Univ Toulouse Paul Sebatier, Inst Math Toulouse, F-31062 Toulouse, France
[2] Univ Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Lyon, France
关键词
METRIC-MEASURE-SPACES; CURVATURE-DIMENSION CONDITION; RICCI CURVATURE; WASSERSTEIN DISTANCE; EULERIAN CALCULUS; EQUATIONS; GEOMETRY; HYPERCONTRACTIVITY; CONTRACTION; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop connections between Harnack inequalities for the heat flow of diffusion operators with curvature bounded from below and optimal transportation. Through heat kernel inequalities, a new isoperimetric-type Harnack inequality is emphasized. Commutation properties between the heat and Hopf-Lax semigroups are developed consequently, providing direct access to heat flow contraction in Wasserstein spaces
引用
收藏
页码:705 / 727
页数:23
相关论文
共 50 条
[21]   THE CANONICAL EXPANDING SOLITON AND HARNACK INEQUALITIES FOR RICCI FLOW [J].
Cabezas-Rivas, Esther ;
Topping, Peter M. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (06) :3001-3021
[22]   New boundary Harnack inequalities with right hand side [J].
Ros-Oton, Xavier ;
Torres-Latorre, Clara .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 288 :204-249
[23]   A note on transportation cost inequalities for diffusions with reflections [J].
Pal, Soumik ;
Sarantsev, Andrey .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
[24]   Transportation-information inequalities for Markov processes [J].
Guillin, Arnaud ;
Leonard, Christian ;
Wu, Liming ;
Yao, Nian .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 144 (3-4) :669-695
[25]   Parabolic Boundary Harnack Inequalities with Right-Hand Side [J].
Torres-Latorre, Clara .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (05)
[26]   Harnack inequalities for SDEs driven by subordinator fractional Brownian motion [J].
Li, Zhi ;
Yan, Litan .
STATISTICS & PROBABILITY LETTERS, 2018, 134 :45-53
[27]   A Note on Harnack Inequalities and Propagation Sets for a Class of Hypoelliptic Operators [J].
Cinti, Chiara ;
Nystrom, Kaj ;
Polidoro, Sergio .
POTENTIAL ANALYSIS, 2010, 33 (04) :341-354
[28]   Harnack inequalities and heat kernel estimates for SDEs with singular drifts [J].
Shao, Jinghai .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (05) :589-601
[29]   Weak Harnack Inequalities for Eigenvalues and the Monotonicity of Hessian's Rank [J].
Xu, Lu ;
Yan, Bianlian .
ANALYSIS IN THEORY AND APPLICATIONS, 2023, 39 (02) :147-162
[30]   Harnack inequalities for a class of heat flows with nonlinear reaction terms [J].
Abolarinwa, Abimbola ;
Ehigie, Julius Osato ;
Alkhaldi, Ali H. .
JOURNAL OF GEOMETRY AND PHYSICS, 2021, 170