It has been shown that the chaperonin GroEL, together with GroES co-chaperonin and Lon ATP-dependent protease are involved in the regulation of expression of the Vibrio fischeri lux operon in Escherichia coli cells. The cells of E. coli groE (pF1)(-) bearing a plasmid with the complete V fischeri lux regulon were weakly luminescent. The cells of E. coli lonA (pF1) displayed intense bioluminescence. The same effects also occurred in mutant E. coli strains bearing a hybrid plasmid pVFR1, where the luxR gene and the regulatory region of the V fischeri lux operon were inserted before the Photorhabdus luminescens luxCDABE cassette. The V fischeri luxR gene was cloned in the pGEX-KG vector with the formation of a hybrid gene gst-luxR. It was shown that affinity chromatography of the product of expression, the chimeric protein GST-LuxR, on a column with glutathione-agarose resulted in its copurification with the proteins GroEL and Lon. Consequently, LuxR, the transcription activator of the lux operon, forms complexes with these proteins. It is supposed that GroEL/GroES is responsible for the folding of the LuxR protein, and Lon protease degrades the LuxR protein either before its folding into an active globule or at denaturing.