Fully truncated simplices and their monodromy groups

被引:1
作者
Berman, Leah Wrenn [1 ]
Monson, Barry [2 ]
Oliveros, Deborah [3 ]
Williams, Gordon I. [1 ]
机构
[1] Univ Alaska Fairbanks, Dept Math & Stat, Fairbanks, AK USA
[2] Univ New Brunswick, Dept Math & Stat, Fredericton, NB, Canada
[3] Univ Nacl Autonoma Mexico, Inst Matemat, Campus Juriquilla, Queretaro, Mexico
基金
加拿大自然科学与工程研究理事会;
关键词
Abstract polytope; monodromy group; simplex; POLYTOPES; COVERS;
D O I
10.1515/advgeom-2017-0047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a simple way to manufacture faithful representations of the monodromy group of an n-polytope. This is used to determine the monodromy group for J(n), the fully truncated n-simplex. As by-products, we get the minimal regular cover for J(n), along with the analogous objects for a prism over a simplex.
引用
收藏
页码:193 / 206
页数:14
相关论文
共 12 条
  • [1] [Anonymous], 1973, REGULAR POLYTOPES
  • [2] The monodromy group of a truncated simplex
    Berman, Leah Wrenn
    Monson, Barry
    Oliveros, Deborah
    Williams, Gordon Ian
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (03) : 745 - 761
  • [3] Coxeter HSM, 1935, P LOND MATH SOC, V38, P327
  • [4] Hartley M.I, ATLAS SMALL REGULAR
  • [5] All polytopes are quotients, and isomorphic polytopes are quotients by conjugate subgroups
    Hartley, MI
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 21 (02) : 289 - 298
  • [6] HARTLEY MI, 1999, AEQUATIONES MATH, V57, P108, DOI DOI 10.1007/S000100050073
  • [7] Minimal covers of the prisms and antiprisms
    Hartley, Michael I.
    Pellicer, Daniel
    Williams, Gordon
    [J]. DISCRETE MATHEMATICS, 2012, 312 (20) : 3046 - 3058
  • [8] McMullen Peter, 2002, ENCY MATH ITS APPL, V92
  • [9] Finite polytopes have finite regular covers
    Monson, B.
    Schulte, Egon
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 40 (01) : 75 - 82
  • [10] Monson B, 2014, T AM MATH SOC, V366, P2651