Sapphire Fiber Bragg Gratings with Improved Spectral Properties for High-temperature Measurements

被引:0
|
作者
Xu, Xizhen [1 ,2 ,3 ]
He, Jun [1 ,2 ,3 ]
Liao, Changrui [1 ,2 ,3 ]
Wang, Yiping [1 ,2 ,3 ]
机构
[1] Shenzhen Univ, Guangdong & Hong Kong Joint Res Ctr Opt Fibre Sen, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Lab Artificial Intelligence & Digital E, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
来源
2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL) | 2019年
基金
中国国家自然科学基金;
关键词
FEMTOSECOND; SENSOR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose the polishing process to obtain a smooth and flat sapphire fiber end face. And the end reflection of the sapphire fiber can be measured by employing the tunable laser and power meter. We study several methods to measure the spectra of sapphire fiber Bragg gratings (SFBGs). The signal to noise ratio (SNR) of sapphire fiber Bragg gratings decreases with increasing propagation distance due to the uneven diameter of sapphire fiber. The high-temperature response of these SFBGs was tested and the experimental results showed the SNRs of SFBGs decreased at a high temperature of 1785 degrees C. Hence, such SFBGs could be developed for promising high temperature sensors in metallurgical, chemical, and aviation industries.
引用
收藏
页码:2080 / 2084
页数:5
相关论文
共 50 条
  • [41] Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings
    Woyessa, Getinet
    Pedersen, Jens Kristian Molgaard
    Fasano, Andrea
    Nielsen, Kristian
    Markos, Christos
    Rasmussen, Henrik Koblitz
    Bang, Ole
    2017 25TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS (OFS), 2017, 10323
  • [42] Factors influencing the temperature sensitivity of PMMA based optical fiber Bragg gratings
    Zhang, Wei
    Webb, David J.
    MICRO-STRUCTURED AND SPECIALTY OPTICAL FIBRES III, 2014, 9128
  • [43] The Improvement of Temperature Sensitivity by Eliminating the Thermal Stress at the Interface of Fiber Bragg Gratings
    Liang, Sixiang
    Wang, Zhan
    Wang, Pengfei
    Liu, Huanhuan
    Sun, Xiaohong
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2024, 67 (03) : 596 - 601
  • [44] Optical system for monitoring groundwater pressure and temperature using fiber Bragg gratings
    Ho, Yen-Te
    Wang, Yu-Li
    Chang, Liang-Cheng
    Wang, Tzu-Pin
    Tsai, Jui-Pin
    OPTICS EXPRESS, 2021, 29 (11): : 16032 - 16045
  • [45] Fiber Bragg Gratings based smart insole to measure plantar pressure and temperature
    Mahmud, Sakib
    Khandakar, Amith
    Chowdhury, Muhammad E. H.
    AbdulMoniem, Mohammed
    Reaz, Mamun Bin Ibne
    Bin Mahbub, Zaid
    Sadasivuni, Kishor Kumar
    Murugappan, M.
    Alhatou, Mohammed
    SENSORS AND ACTUATORS A-PHYSICAL, 2023, 350
  • [46] Microchanneled Chirped Fibre Bragg Gratings For Simultaneous Refractive Index and Temperature Measurements
    Saffari, Pouneh
    Fu, Hongyan
    Zhou, Kaiming
    Zhang, Lin
    Bennion, Ian
    OPTICAL SENSORS 2009, 2009, 7356
  • [47] Simultaneous refractive index and temperature sensing based on a fiber surface waveguide and fiber Bragg gratings
    Chen, Qi
    Wang, D. N.
    Gao, Feng
    OPTICS LETTERS, 2021, 46 (06) : 1209 - 1212
  • [48] Accurate Measurement of Large Strain under High-temperature Environment Based on Fiber Bragg Grating
    Wang, Zhiyuan
    Wang, Jindong
    Zhu, Tao
    2022 IEEE 7TH OPTOELECTRONICS GLOBAL CONFERENCE, OGC, 2022, : 128 - 132
  • [49] Optical Fiber Temperature and Humidity Dual Parameter Sensing Based on Fiber Bragg Gratings and Porous Film
    Peng, Jiankun
    Zhou, Jianren
    Sun, Chengli
    Liu, Qingping
    Esposito, Flavio
    SENSORS, 2023, 23 (17)
  • [50] Investigations on high-reflective Fiber-Bragg-Gratings in multimode fibers
    Raguse, Marius
    Klein, Sarah
    Baer, Patrick
    Giesberts, Martin
    Traub, Martin
    Hoffmann, Hans-Dieter
    OPTICS CONTINUUM, 2022, 1 (05): : 965 - 973