Improved Particle Swarm Optimization Geomagnetic Matching Algorithm Based on Simulated Annealing

被引:13
|
作者
Ji, Caijuan [1 ]
Chen, Qingwei [1 ]
Song, Chengying [1 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Control Sci & Engn, Nanjing 210094, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
基金
中国国家自然科学基金;
关键词
Navigation; Real-time systems; Particle swarm optimization; Particle measurements; Atmospheric measurements; Satellite navigation systems; Magnetic domains; Geomagnetic matching; particle swarm optimization; simulated annealing; NAVIGATION; ICCP;
D O I
10.1109/ACCESS.2020.3043794
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a new assistant navigation technology using geophysical field for navigation, geomagnetic matching navigation can effectively alleviate the problems such as the unavailability of satellite and the easy divergence of position data of inertial navigation system in the process of navigation. It can also carry out real-time assistant navigation with high concealment, all-around area and all-weather. According to the principle of geomagnetic matching and the geomagnetic affine model, considering that the basic particle swarm optimization algorithm is easy to fall into local extremum, this paper introduces particle swarm optimization geomagnetic matching algorithm based on simulated annealing(SAPSO) for limitations of traditional matching algorithm. What's more, the SAPSO is improved from three parts: constraints, parameters and function of fitness. Finally, the simulation analysis is carried out from five aspects to verify the effectiveness and accuracy of the improved SAPSO.
引用
收藏
页码:226064 / 226073
页数:10
相关论文
共 50 条
  • [1] An Improved Particle Swarm Optimization Algorithm Based on Simulated Annealing
    Yang, Huafen
    Yang, Zuyuan
    Yang, You
    Zhang, Lihui
    2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2014, : 529 - 533
  • [2] A SVM image segmentation algorithm based on improved simulated annealing particle swarm optimization
    Cao, Bin
    Shen, Xuanjing
    Qian, Qingji
    Journal of Computational Information Systems, 2011, 7 (10): : 3676 - 3682
  • [3] Particle Swarm Optimization Algorithm Based on the Idea of Simulated Annealing
    Dong Chaojun
    Qiu Zulian
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2006, 6 (10): : 152 - 157
  • [4] An Improved Self-Adaptive Particle Swarm Optimization Algorithm with Simulated Annealing
    Jun, Shu
    Jian, Li
    2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL 3, PROCEEDINGS, 2009, : 396 - +
  • [5] An Improved Adaptive Simulated Annealing Particle Swarm Optimization Algorithm for ARAIM Availability
    Wang, Ershen
    Shi, Xiaozhu
    Deng, Xidan
    Gao, Jing
    Zhang, Wei
    Wang, Huan
    Xu, Song
    JOURNAL OF ADVANCED TRANSPORTATION, 2023, 2023
  • [6] Improvement of Original Particle Swarm Optimization Algorithm Based on Simulated Annealing Algorithm
    Cong Liang
    Hu Chengquan
    Guo Zongpeng
    Jiang Yu
    Sha Lihua
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 6, 2008, : 671 - 676
  • [7] Cooperative evolutionary algorithm based on particle swarm optimization and simulated annealing algorithm
    Division of System Simulation and Computer Application, Taiyuan University of Science and Technology, Taiyuan 030024, China
    Zidonghua Xuebao, 2006, 4 (630-635):
  • [8] A cooperative evolutionary algorithm based on simulated annealing algorithm and particle swarm optimization
    Wang, LF
    Zeng, JC
    PROGRESS IN INTELLIGENCE COMPUTATION & APPLICATIONS, 2005, : 19 - 25
  • [10] Particle swarm algorithm based on simulated annealing to solve constrained optimization
    Kou, Xiao-Li
    Liu, San-Yang
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2007, 37 (01): : 136 - 140