Design of efficient computational workflows for in silico drug repurposing

被引:92
作者
Vanhaelen, Quentin [1 ]
Mamoshina, Polina [1 ]
Aliper, Alexander M. [1 ]
Artemov, Artem [1 ]
Lezhnina, Ksenia [1 ]
Ozerov, Ivan [1 ]
Labat, Ivan [2 ]
Zhavoronkov, Alex [1 ]
机构
[1] Johns Hopkins Univ, Insilico Med Inc, ETC, Baltimore, MD 21218 USA
[2] BioTime Inc, 1010 Atlantic Ave 102, Alameda, CA 94501 USA
关键词
TARGET INTERACTION PREDICTION; DISEASE RELATIONSHIPS; RATIONAL DRUG; NETWORK; DISCOVERY; PROTEIN; IDENTIFICATION; OPPORTUNITIES; INHIBITORS; MOLECULES;
D O I
10.1016/j.drudis.2016.09.019
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Here, we provide a comprehensive overview of the current status of in silico repurposing methods by establishing links between current technological trends, data availability and characteristics of the algorithms used in these methods. Using the case of the computational repurposing of fasudil as an alternative autophagy enhancer, we suggest a generic modular organization of a repurposing workflow. We also review 3D structure based, similarity-based, inference-based and machine learning (ML)-based methods. We summarize the advantages and disadvantages of these methods to emphasize three current technical challenges. We finish by discussing current directions of research, including possibilities offered by new methods, such as deep learning.
引用
收藏
页码:210 / 222
页数:13
相关论文
共 101 条
[1]   Crowd-sensing with Polarized Sources [J].
Al Amin, Tanvir ;
Abdelzaher, Tarek ;
Wang, Dong ;
Szymanski, Boleslaw .
2014 IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (IEEE DCOSS 2014), 2014, :67-74
[2]  
Alaimo S, 2016, METHODS MOL BIOL, V1415, P441, DOI 10.1007/978-1-4939-3572-7_23
[3]   Drug-target interaction prediction through domain-tuned network-based inference [J].
Alaimo, Salvatore ;
Pulvirenti, Alfredo ;
Giugno, Rosalba ;
Ferro, Alfredo .
BIOINFORMATICS, 2013, 29 (16) :2004-2008
[4]   Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data [J].
Aliper, Alexander ;
Plis, Sergey ;
Artemov, Artem ;
Ulloa, Alvaro ;
Mamoshina, Polina ;
Zhavoronkov, Alex .
MOLECULAR PHARMACEUTICS, 2016, 13 (07) :2524-2530
[5]  
[Anonymous], ARXIV150807551
[6]  
[Anonymous], 2015, ARXIV150202072
[7]   Drug repositioning: Identifying and developing new uses for existing drugs [J].
Ashburn, TT ;
Thor, KB .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (08) :673-683
[8]   Supervised prediction of drug-target interactions using bipartite local models [J].
Bleakley, Kevin ;
Yamanishi, Yoshihiro .
BIOINFORMATICS, 2009, 25 (18) :2397-2403
[9]   Drug target identification using side-effect similarity [J].
Campillos, Monica ;
Kuhn, Michael ;
Gavin, Anne-Claude ;
Jensen, Lars Juhl ;
Bork, Peer .
SCIENCE, 2008, 321 (5886) :263-266
[10]   Leveraging Big Data to Transform Target Selection and Drug Discovery [J].
Chen, B. ;
Butte, A. J. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2016, 99 (03) :285-297