STRENGTH PROPERTIES OF POLYPROPYLENE FIBER REINFORCED HIGH STRENGTH CONCRETE

被引:0
|
作者
Cazan, Oana Eugenia [1 ]
Gherman, Marius Calin [2 ]
Szilagyi, Henriette [1 ]
Constantinescu, Horia [1 ,2 ]
机构
[1] Natl Inst Res & Dev Construct URBAN INCERC, Cluj Napoca Branch, Cluj Napoca, Romania
[2] Tech Univ Cluj Napoca, Fac Civil Engn, Cluj Napoca, Romania
来源
NANO, BIO AND GREEN - TECHNOLOGIES FOR A SUSTAINABLE FUTURE, VOL I (SGEM 2015) | 2015年
关键词
fiber reinforcement; mechanical properties; high strength concrete; spalling; elevated temperatures; HIGH-PERFORMANCE CONCRETE; HIGH-TEMPERATURE; BEHAVIOR;
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
An experimental program was carried out in this research to investigate the behavior of high strength concrete with polypropylene fibers addition. Two types of concrete mixtures were studied, one containing 0.22% polypropylene fibers and the other 0.30% polypropylene fibers in volume fraction. The concrete class determined at 28 days was C70/85. Mechanical properties such as compressive strength, splitting tensile strength, flexural strength, modulus of elasticity and energy absorption were determined on high strength polypropylene fibers reinforced concrete. High strength fiber reinforced concrete properties were determined at 1, 3, 7, 28 and 56 days. The influence of polypropylene fibers addition on the spalling phenomenon and residual strengths of concrete after exposure to high temperature was also determined at 56 days of concrete. After analyzing the results of the experimental program we concluded that the addition of polypropylene fibers to the high strength concrete composition hasn't a positive influence on the compressive and flexural strength of high strength concrete, but it has for sure a negative impact towards splitting tensile strength of high strength concrete. However, the modulus of elasticity and the energy absorption of the high strength concrete with polypropylene fibers addition are higher than of the high strength concrete without fibers addition. Referring to the residual strength of high strength polypropylene finer reinforced concrete it was observed that regardless the presence of the polypropylene fibers, the residual strength (compressive and splitting tensile) drops continuously under rising temperatures, reaching after exposure to 900 degrees C to 30% of their initial strength.
引用
收藏
页码:193 / 200
页数:8
相关论文
共 50 条
  • [21] Compression Specific Toughness of Normal Strength Steel Fiber Reinforced Concrete (NSSFRC) and High Strength Steel Fiber Reinforced Concrete (HSSFRC)
    Marar, Khaled
    Eren, Ozgur
    Yitmen, Ibrahim
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2011, 14 (02): : 239 - 247
  • [22] EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF FIBRE REINFORCED HIGH STRENGTH CONCRETE WITH POLYPROPYLENE AND STEEL FIBRE
    Kumar, M. Sathish
    Arunachalam, K.
    JOURNAL OF ENVIRONMENTAL PROTECTION AND ECOLOGY, 2019, 20 (01): : 313 - 325
  • [23] Strength properties of fiber reinforced concrete including steel fibers
    Adlparvar, Mohammad Reza
    Esmaeili, Morteza
    Parsa, Mohammad Hossein Taghavi
    WORLD JOURNAL OF ENGINEERING, 2024, 21 (01) : 194 - 202
  • [24] Strength properties of nylon- and polypropylene-fiber-reinforced concretes
    Song, PS
    Hwang, S
    Sheu, BC
    CEMENT AND CONCRETE RESEARCH, 2005, 35 (08) : 1546 - 1550
  • [25] Strength Prediction Models for PVA Fiber-Reinforced High-Strength Concrete
    Nuruddin, Muhd. Fadhil
    Khan, Sadaqat Ullah
    Shafiq, Nasir
    Ayub, Tehmina
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2015, 27 (12)
  • [26] Nominal Flexural Strength of High Strength Fiber Reinforced Concrete Beams
    F. B. A. Beshara
    I. G. Shaaban
    T. S. Mustafa
    Arabian Journal for Science and Engineering, 2012, 37 : 291 - 301
  • [27] BEHAVIOR OF HYBRID STEEL FIBER REINFORCED HIGH STRENGTH CONCRETE
    Balanji, Emdad K. Z.
    Sheikh, M. Neaz
    Hadi, Muhammad N. S.
    PROCEEDINGS OF INTERNATIONAL STRUCTURAL ENGINEERING AND CONSTRUCTION: INTERACTION BETWEEN THEORY AND PRACTICE IN CIVIL ENGINEERING AND CONSTRUCTION, 2016, : 29 - 34
  • [28] Fracture Energy of Steel Fiber Reinforced High Strength Concrete
    Zhang, Tingyi
    Wang, Zili
    Gao, Danying
    ADVANCES IN BUILDING MATERIALS, PTS 1-3, 2011, 168-170 : 2230 - +
  • [29] Residual properties of high-strength fiber reinforced concrete after exposure to high temperatures
    Tang, Chao-Wei
    COMPUTERS AND CONCRETE, 2019, 24 (01): : 63 - 71
  • [30] Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete
    Varona, F. B.
    Baeza, F. J.
    Bru, D.
    Ivorra, S.
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 159 : 73 - 82