Non-hyperelliptic Riemann surfaces with real field of moduli but not definable over the reals

被引:26
作者
Hidalgo, Ruben A. [1 ]
机构
[1] Univ Tecn Feder Santa Maria, Dept Matemat, Valparaiso, Chile
关键词
Riemann surfaces; Algebraic curves; Automorphisms; Fields of moduli;
D O I
10.1007/s00013-009-0025-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The known examples of explicit equations for Riemann surfaces, whose field of moduli is different from their field of definition, are all hyperelliptic. In this paper we construct a family of equations for non-hyperelliptic Riemann surfaces, each of them is isomorphic to its conjugate Riemann surface, but none of them admit an anticonformal automorphism of order 2; that is, each of them has its field of moduli, but not a field of definition, contained in R. These appear to be the first explicit such examples in the non-hyperelliptic case.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 9 条
[1]  
ACKERMANN P, 2005, THESIS U DORTMUND
[2]   Generalized humbert curves [J].
Carocca, Angel ;
Gonzalez-Aguilera, Victor ;
Hidalgo, Ruben A. ;
Rodriguez, Rubi E. .
ISRAEL JOURNAL OF MATHEMATICS, 2008, 164 (01) :165-192
[3]  
Earle C. J., 1971, Ann. of Math. Stud., V66, P119
[4]  
EARLE CJ, 2002, DIFFEOMORPHISM AUTOM
[5]   Fields of moduli and definition of hyperelliptic covers [J].
Fuertes, Y. ;
Gonzalez-Diez, G. .
ARCHIV DER MATHEMATIK, 2006, 86 (05) :398-408
[6]   Generalized Fermat curves [J].
Gonzalez-Diez, Gabino ;
Hidalgo, Ruben A. ;
Leyton, Maximiliano .
JOURNAL OF ALGEBRA, 2009, 321 (06) :1643-1660
[7]  
Maximiliano LA, 2007, REV MAT IBEROAM, V23, P793
[8]   FIELD OF RATIONALITY FOR AN ABELIAN VARIETY [J].
SHIMURA, G .
NAGOYA MATHEMATICAL JOURNAL, 1972, 45 (FEB) :167-&
[9]  
Silhol R., 1972, REAL ALGEBRAIC GEOME, P110