Single cell analysis of the developing mouse kidney provides deeper insight into marker gene expression and ligand-receptor crosstalk

被引:108
作者
Combes, Alexander N. [1 ,2 ]
Phipson, Belinda [2 ,3 ]
Lawlor, Kynan T. [2 ]
Dorison, Aude [4 ]
Patrick, Ralph [4 ,5 ]
Zappia, Luke [2 ,6 ]
Harvey, Richard P. [4 ,5 ,7 ]
Oshlack, Alicia [1 ,6 ]
Little, Melissa H. [1 ,2 ,3 ]
机构
[1] Univ Melbourne, Dept Anat & Neurosci, Parkville, Vic 3010, Australia
[2] Murdoch Childrens Res Inst, Cell Biol, Flemington Rd, Parkville, Vic 3052, Australia
[3] Univ Melbourne, Dept Paediat, Parkville, Vic 3010, Australia
[4] Victor Chang Cardiac Res Inst, Dev & Stem Cell Biol Div, Darlinghurst, NSW 2010, Australia
[5] Univ New South Wales, St Vincents Clin Sch, Kensington, NSW 2033, Australia
[6] Univ Melbourne, Sch Biosci, Parkville, Vic 3010, Australia
[7] Univ New South Wales, Sch Biotechnol & Biomol Sci, Kensington, NSW 2010, Australia
来源
DEVELOPMENT | 2019年 / 146卷 / 12期
基金
英国医学研究理事会; 澳大利亚研究理事会;
关键词
Kidney development; Single cell RNA-seq; Organogenesis; Nephron progenitor; Ureteric epithelium; NEPHRON PROGENITOR CELLS; IN-VITRO PROPAGATION; URETERAL BUD; BRANCHING MORPHOGENESIS; METANEPHRIC MESENCHYME; DIVERGENT FEATURES; STROMAL CELLS; TISSUE; POPULATION; NICHE;
D O I
10.1242/dev.178673
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent advances in the generation of kidney organoids and the culture of primary nephron progenitors from mouse and human have been based on knowledge of the molecular basis of kidney development in mice. Although gene expression during kidney development has been intensely investigated, single cell profiling provides new opportunities to further subsect component cell types and the signalling networks at play. Here, we describe the generation and analysis of 6732 single cell transcriptomes from the fetal mouse kidney [embryonic day (E) 18.5] and 7853 sorted nephron progenitor cells (E14.5). These datasets provide improved resolution of cell types and specific markers, including subdivision of the renal stroma and heterogeneity within the nephron progenitor population. Ligand-receptor interaction and pathway analysis reveals novel crosstalk between cellular compartments and associates new pathways with differentiation of nephron and ureteric epithelium cell types. We identify transcriptional congruence between the distal nephron and ureteric epithelium, showing that most markers previously used to identify ureteric epithelium are not specific. Together, this work improves our understanding of metanephric kidney development and provides a template to guide the regeneration of renal tissue.
引用
收藏
页数:15
相关论文
共 89 条
[1]   Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development [J].
Adam, Mike ;
Potter, Andrew S. ;
Potter, S. Steven .
DEVELOPMENT, 2017, 144 (19) :3625-3632
[2]   Tbx18 regulates the development of the ureteral mesenchyme [J].
Airik, R ;
Bussen, M ;
Singh, MK ;
Petry, M ;
Kispert, A .
JOURNAL OF CLINICAL INVESTIGATION, 2006, 116 (03) :663-674
[3]   Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing [J].
Bach, Karsten ;
Pensa, Sara ;
Grzelak, Marta ;
Hadfield, James ;
Adams, David J. ;
Marioni, John C. ;
Khaled, Walid T. .
NATURE COMMUNICATIONS, 2017, 8
[4]   Human nephron number: implications for health and disease [J].
Bertram, John F. ;
Douglas-Denton, Rebecca N. ;
Diouf, Boucar ;
Hughson, Michael D. ;
Hoy, Wendy E. .
PEDIATRIC NEPHROLOGY, 2011, 26 (09) :1529-1533
[5]   Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate [J].
Bohnenpoll, Tobias ;
Bettenhausen, Eva ;
Weiss, Anna-Carina ;
Foik, Anna B. ;
Trowe, Mark-Oliver ;
Blank, Patrick ;
Airik, Rannar ;
Kispert, Andreas .
DEVELOPMENTAL BIOLOGY, 2013, 380 (01) :25-36
[6]   Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia [J].
Boyle, Scott ;
Misfeldt, Andrew ;
Chandler, Kelly J. ;
Deal, Karen K. ;
Southard-Smith, E. Michelle ;
Mortlock, Douglas P. ;
Baldwin, H. Scott ;
de Caestecker, Mark .
DEVELOPMENTAL BIOLOGY, 2008, 313 (01) :234-245
[7]   A Synthetic Niche for Nephron Progenitor Cells [J].
Brown, Aaron C. ;
Muthukrishnan, Deepthi ;
Oxburgh, Leif .
DEVELOPMENTAL CELL, 2015, 34 (02) :229-241
[8]   FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development [J].
Brown, Aaron C. ;
Adams, Derek ;
de Caestecker, Mark ;
Yang, Xuehui ;
Friesel, Robert ;
Oxburgh, Leif .
DEVELOPMENT, 2011, 138 (23) :5099-5112
[9]   Atlas of Gene Expression in the Developing Kidney at Microanatomic Resolution [J].
Brunskill, Eric W. ;
Aronow, Bruce J. ;
Georgas, Kylie ;
Rumballe, Bree ;
Valerius, M. Todd ;
Aronow, Jeremy ;
Kaimal, Vivek ;
Jegga, Anil G. ;
Grimmond, Sean ;
McMahon, Andrew P. ;
Patterson, Larry T. ;
Little, Melissa H. ;
Potter, S. Steven .
DEVELOPMENTAL CELL, 2008, 15 (05) :781-791
[10]   Single cell dissection of early kidney development: multilineage priming [J].
Brunskill, Eric W. ;
Park, Joo-Seop ;
Chung, Eunah ;
Chen, Feng ;
Magella, Bliss ;
Potter, S. Steven .
DEVELOPMENT, 2014, 141 (15) :3093-3101