On the birational geometry of moduli spaces of pointed curves

被引:10
作者
Ballico, Edoardo [1 ]
Casnati, Gianfranco [2 ]
Fontanari, Claudio [2 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Trento, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
MAXIMAL RANK CONJECTURE; RATIONALITY; UNIRATIONALITY;
D O I
10.1515/FORUM.2009.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the moduli space M(g,n) of smooth curves of genus g with n marked points is rational for g = 6 and 1 <= n <= 8, and it is unirational for g = 8 and 1 <= n <= 11, g = 10 and 1 <= n <= 3, g = 12 and n = 1.
引用
收藏
页码:935 / 950
页数:16
相关论文
共 25 条
[1]  
[Anonymous], 52 GTM
[2]  
[Anonymous], 1985, GEOMETRY ALGEBRAIC C
[3]   FOOTNOTES TO A PAPER OF BENIAMINO SEGRE - THE NUMBER OF GD1,S ON A GENERAL D-GONAL CURVE, AND THE UNIRATIONALITY OF THE HURWITZ SPACES OF 4-GONAL AND 5-GONAL CURVES [J].
ARBARELLO, E ;
CORNALBA, M .
MATHEMATISCHE ANNALEN, 1981, 256 (03) :341-362
[4]   THE MAXIMAL RANK CONJECTURE FOR NONSPECIAL CURVES IN PN [J].
BALLICO, E ;
ELLIA, P .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (03) :355-367
[5]   THE MAXIMAL RANK CONJECTURE FOR NON-SPECIAL CURVES IN IP3 [J].
BALLICO, E ;
ELLIA, P .
INVENTIONES MATHEMATICAE, 1985, 79 (03) :541-555
[6]  
BALLICO E, 1985, MATH Z, V188, P355
[7]   Moduli of curves and spin structures via algebraic geometry [J].
Bini, G ;
Fontanari, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (07) :3207-3217
[8]  
BRUNO A, 2004, PROJECTIVE VARIETIES, P51
[9]   On the rationality of moduli spaces of pointed curves [J].
Casnati, G. ;
Fontanari, C. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 :582-596
[10]  
Castelnuovo G., 1889, RENDICONTI R ACCAD L, V5, P130