Influence of edge reconstruction on the electron transport in zigzag graphene nanoribbon

被引:4
作者
Li Biao [1 ]
Xu Da-Hai [1 ]
Zeng Hui [1 ]
机构
[1] Yangtze Univ, Coll Phys Sci & Technol, Jinzhou 434023, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene nanoribbon; reconstruction; electronic structure; electron transport;
D O I
10.7498/aps.63.117102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Edge reconstructions of graphene nanoribbons and their stable defective configurations were identified by experimental characterization. First principles calculations are performed to evaluate the effects of atomic edge arrangement on the electronic transport properties of zigzag graphene nanoribbons. It is found that these two defective edge structures affect effectively the high stable nanostructure configuration and give rise to pronounced modifications on electronic bands, leading to the shift of Fermi level as well as the occurrence of resonant energies. Both of these two atomic reconstructions would limit the electron transport around the Fermi level, and result in the complete resonant backscattering taking place at different locations. The suppression of conductance is not only related with increasing defect size, but more sensitive to the distribution of defect state, and the modifications on the electronic bands that are influenced by the edge reconstructions.
引用
收藏
页数:6
相关论文
共 36 条
[1]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[2]   Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons [J].
Biel, Blanca ;
Blase, X. ;
Triozon, Francois ;
Roche, Stephan .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)
[3]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]  
Datta S., 2005, QUANTUM TRANSPORT AT, V1, P232
[6]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758
[7]   Quantum Transport in Graphene Nanoribbons: Effects of Edge Reconstruction and Chemical Reactivity [J].
Dubois, Simon M. -M. ;
Lopez-Bezanilla, Alejandro ;
Cresti, Alessandro ;
Triozon, Francois ;
Biel, Blanca ;
Charlier, Jean-Christophe ;
Roche, Stephan .
ACS NANO, 2010, 4 (04) :1971-1976
[8]   Electronic structures of graphene edges and nanographene [J].
Enoki, Toshiaki ;
Kobayashi, Yousuke ;
Fukui, Ken-Ichi .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2007, 26 (04) :609-645
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534