On the geometry of flat pseudo-Riemannian homogeneous spaces

被引:0
|
作者
Globke, Wolfgang [1 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
关键词
Homogeneous Space; Algebraic Group; Unipotent Group; Zariski Closure; Algebraic Subgroup;
D O I
10.1007/s11856-014-1060-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M = a"e (s) (n) /I" be a complete flat pseudo-Riemannian homogeneous manifold, I" aS, Iso(a"e (s) (n) ) its fundamental group and G the Zariski closure of I" in Iso(a"e (s) (n) ). We show that the G-orbits in a"e (s) (n) are affine subspaces and affinely diffeomorphic to G endowed with the (0)-connection. If the restriction of the pseudo-scalar product on a"e (s) (n) to the G-orbits is nondegenerate, then M has abelian linear holonomy. If additionally G is not abelian, then G contains a certain subgroup of dimension 6. In particular, for non-abelian G, orbits with non-degenerate metric can appear only if dim G a parts per thousand yen 6. Moreover, we show that a"e (s) (n) is a trivial algebraic principal bundle G -> M -> a"e (n-k) . As a consquence, M is a trivial smooth bundle G/I" -> M -> a"e (n-k) with compact fiber G/Gamma.
引用
收藏
页码:255 / 274
页数:20
相关论文
共 50 条
  • [21] Homogeneous geodesics in homogeneous Riemannian manifolds - examples
    Kowalski, O
    Nikcevic, S
    Vlasek, Z
    GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 104 - 112
  • [22] On the existence of homogeneous geodesics in homogeneous Riemannian manifolds
    Kowalski, O
    Szenthe, J
    GEOMETRIAE DEDICATA, 2000, 81 (1-3) : 209 - 214
  • [23] On the Existence of Homogeneous Geodesics in Homogeneous Riemannian Manifolds
    Oldřich Kowalski
    János Szenthe
    Geometriae Dedicata, 2000, 81 : 209 - 214
  • [24] Metric geometry of infinite-dimensional Lie groups and their homogeneous spaces
    Larotonda, Gabriel
    FORUM MATHEMATICUM, 2019, 31 (06) : 1567 - 1605
  • [25] On affinely closed, homogeneous spaces
    Arzhantsev I.V.
    Tennova N.A.
    Journal of Mathematical Sciences, 2005, 131 (6) : 6133 - 6139
  • [26] Homogeneous Riemannian structures in dimension three
    Calvino-Louzao, E.
    Ferreiro-Subrido, M.
    Garcia-Rio, E.
    Vazquez-Lorenzo, R.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (02)
  • [27] Homogeneous Riemannian structures in dimension three
    E. Calviño-Louzao
    M. Ferreiro-Subrido
    E. García-Río
    R. Vázquez-Lorenzo
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [28] Some Einstein homogeneous Riemannian fibrations
    Araujo, Fatima
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2010, 28 (03) : 241 - 263
  • [29] On δ-homogeneous Riemannian manifolds. II
    V. N. Berestovskiĭ
    Yu. G. Nikonorov
    Siberian Mathematical Journal, 2009, 50 : 214 - 222
  • [30] On δ-homogeneous Riemannian manifolds. II
    Berestovskii, V. N.
    Nikonorov, Yu. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2009, 50 (02) : 214 - 222