Variable-dimension quantization of sinusoidal amplitudes using Gaussian mixture models

被引:0
|
作者
Lindblom, J [1 ]
Hedelin, P [1 ]
机构
[1] Chalmers Univ Technol, Sch Elect Engn, SE-41296 Gothenburg, Sweden
来源
2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PROCEEDINGS: SPEECH PROCESSING | 2004年
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, Gaussian mixture (GM) models are used to design variable-dimension quantizers according to a weighted distortion criterion. A general method for combining a variable-to-fixed dimension transform, with GM modeling and quantization, is proposed. The method provides a convenient and efficient way to encode the amplitudes in a sinusoidal speech coder. Quantizers designed according to the proposed scheme are evaluated both according to weighted distortion criteria, and with respect to a high-rate bound approximation of the distortion. Informal listening tests suggest that the amplitudes can be encoded without subjective loss in a wideband, harmonic coder, at a rate around 40 bits per frame (for the amplitudes only).
引用
收藏
页码:153 / 156
页数:4
相关论文
共 50 条
  • [31] Comparative evaluation of maximum a Posteriori vector quantization and gaussian mixture models in speaker verification
    Kinnunen, Tomi
    Saastamoinen, Juhani
    Hautamaki, Ville
    Vinni, Mikko
    Franti, Pasi
    PATTERN RECOGNITION LETTERS, 2009, 30 (04) : 341 - 347
  • [32] Speech Enhancement Using Gaussian Scale Mixture Models
    Hao, Jiucang
    Lee, Te-Won
    Sejnowski, Terrence J.
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2010, 18 (06): : 1127 - 1136
  • [33] Using Weak Supervision in Learning Gaussian Mixture Models
    Ghosh, Soumya
    Srinivasan, Soundararajan
    Andrews, Burton
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 2389 - +
  • [34] Image Denoising Using Asymmetric Gaussian Mixture Models
    He, Wen
    Yu, Rui
    Zheng, Yuhui
    Jiang, Tao
    2018 INTERNATIONAL SYMPOSIUM IN SENSING AND INSTRUMENTATION IN IOT ERA (ISSI), 2018,
  • [35] Automatic accent identification using Gaussian mixture models
    Chen, T
    Huang, C
    Chang, E
    Wang, JC
    ASRU 2001: IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING, CONFERENCE PROCEEDINGS, 2001, : 343 - 346
  • [36] Classifying Frog Calls Using Gaussian Mixture Models
    Kular, Dalwinderjeet
    Hollowood, Kathryn
    Ommojaro, Olatide
    Smart, Katrina
    Bush, Mark
    Ribeiro, Eraldo
    ADVANCES IN VISUAL COMPUTING, PT II (ISVC 2015), 2015, 9475 : 347 - 354
  • [37] ACCENT ADAPTATION USING SUBSPACE GAUSSIAN MIXTURE MODELS
    Motlicek, Petr
    Garner, Philip N.
    Kim, Namhoon
    Cho, Jeongmi
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 7170 - 7174
  • [38] Video Compressive Sensing Using Gaussian Mixture Models
    Yang, Jianbo
    Yuan, Xin
    Liao, Xuejun
    Llull, Patrick
    Brady, David J.
    Sapiro, Guillermo
    Carin, Lawrence
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (11) : 4863 - 4878
  • [39] On the characterization of flowering curves using Gaussian mixture models
    Proia, Frederic
    Pernet, Alix
    Thouroude, Tatiana
    Michel, Gilles
    Clotault, Jeremy
    JOURNAL OF THEORETICAL BIOLOGY, 2016, 402 : 75 - 88
  • [40] Classification and compression of ICEGS using gaussian mixture models
    Coggins, R
    Jabri, M
    NEURAL NETWORKS FOR SIGNAL PROCESSING VII, 1997, : 226 - 235