Variable-dimension quantization of sinusoidal amplitudes using Gaussian mixture models

被引:0
|
作者
Lindblom, J [1 ]
Hedelin, P [1 ]
机构
[1] Chalmers Univ Technol, Sch Elect Engn, SE-41296 Gothenburg, Sweden
来源
2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PROCEEDINGS: SPEECH PROCESSING | 2004年
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, Gaussian mixture (GM) models are used to design variable-dimension quantizers according to a weighted distortion criterion. A general method for combining a variable-to-fixed dimension transform, with GM modeling and quantization, is proposed. The method provides a convenient and efficient way to encode the amplitudes in a sinusoidal speech coder. Quantizers designed according to the proposed scheme are evaluated both according to weighted distortion criteria, and with respect to a high-rate bound approximation of the distortion. Informal listening tests suggest that the amplitudes can be encoded without subjective loss in a wideband, harmonic coder, at a rate around 40 bits per frame (for the amplitudes only).
引用
收藏
页码:153 / 156
页数:4
相关论文
共 50 条
  • [1] Variable-dimension vector quantization
    Das, A
    Rao, AV
    Gersho, A
    IEEE SIGNAL PROCESSING LETTERS, 1996, 3 (07) : 200 - 202
  • [2] Waveform quantization of speech using Gaussian mixture models
    Samuelsson, J
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PROCEEDINGS: SPEECH PROCESSING, 2004, : 165 - 168
  • [3] PROCEDURE LEARNING USING A VARIABLE-DIMENSION SOLUTION SPACE
    HINTZ, KJ
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, 1989, : 237 - 242
  • [4] DIMENSION REDUCTION IN REGRESSION USING GAUSSIAN MIXTURE MODELS
    Mirbagheri, Majid
    Xu, Yanbo
    Shamma, Shihab
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2169 - 2172
  • [5] TRACKING USING THE VARIABLE-DIMENSION FILTER WITH INPUT ESTIMATION
    PARK, YH
    SEO, JH
    LEE, JG
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1995, 31 (01) : 399 - 408
  • [6] Variable dimension trellis-coded quantization of sinusoidal parameters
    Larsen, Morten Holm
    Christensen, Mads Graesboll
    Jensen, Soren Holdt
    IEEE SIGNAL PROCESSING LETTERS, 2008, 15 (17-20) : 17 - 20
  • [7] Vector quantization based on Gaussian mixture models
    Hedelin, P
    Skoglund, J
    IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2000, 8 (04): : 385 - 401
  • [8] On Entropy-Constrained Vector Quantization using Gaussian Mixture Models
    Zhao, David Y.
    Samuelsson, Jonas
    Nilsson, Mattias
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2008, 56 (12) : 2094 - 2104
  • [9] MULTIPLE OBJECT TRACKING USING AN AUTOMATIC VARIABLE-DIMENSION PARTICLE FILTER
    Arrospide, Jon
    Salgado, Luis
    Nieto, Marcos
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 49 - 52
  • [10] Variable Resolution Occupancy Mapping Using Gaussian Mixture Models
    O'Meadhra, Cormac
    Tabib, Wennie
    Michael, Nathan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02) : 2015 - 2022