Rigidity of inversive distance circle packings revisited

被引:20
|
作者
Xu, Xu [1 ,2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Inversive distance; Circle packing; Rigidity; Combinatorial curvature; POLYHEDRAL SURFACES; FLOWS; CURVATURE; PRINCIPLE;
D O I
10.1016/j.aim.2018.05.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inversive distance circle packing metric was introduced by P Bowers and K Stephenson [7] as a generalization of Thurston's circle packing metric [34]. They conjectured that the inversive distance circle packings are rigid. For nonnegative inversive distance, Guo [22] proved the infinitesimal rigidity and then Luo [27] proved the global rigidity. In this paper, based on an observation of Zhou [37], we prove this conjecture for inversive distance in (-1, +infinity) by variational principles. We also study the global rigidity of a combinatorial curvature introduced in [14,16,19] with respect to the inversive distance circle packing metrics where the inversive distance is in (-1, +infinity). (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:476 / 509
页数:34
相关论文
共 50 条
  • [1] Non-rigidity of Spherical Inversive Distance Circle Packings
    Ma, Jiming
    Schlenker, Jean-Marc
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (03) : 610 - 617
  • [2] Non-rigidity of Spherical Inversive Distance Circle Packings
    Jiming Ma
    Jean-Marc Schlenker
    Discrete & Computational Geometry, 2012, 47 : 610 - 617
  • [3] On the deformation of inversive distance circle packings, II
    Ge, Huabin
    Jiang, Wenshuai
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (09) : 3573 - 3595
  • [4] LOCAL RIGIDITY OF INVERSIVE DISTANCE CIRCLE PACKING
    Guo, Ren
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (09) : 4757 - 4776
  • [5] ON THE DEFORMATION OF INVERSIVE DISTANCE CIRCLE PACKINGS, I
    Ge, Huabin
    Jiang, Wenshuai
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (09) : 6231 - 6261
  • [6] Rigidity of circle packings with crosscuts
    Krieg, David
    Wegert, Elias
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2016, 57 (01): : 1 - 36
  • [7] On a combinatorial curvature for surfaces with inversive distance circle packing metrics
    Ge, Huabin
    Xu, Xu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (03) : 523 - 558
  • [8] ON THE CONVERGENCE OF CIRCLE PACKINGS TO THE QUASICONFORMAL MAP
    Huang Xiaojun
    Shen Liang
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (05) : 1173 - 1181
  • [9] Hyperbolic circle packings and total geodesic curvatures on surfaces with boundary
    Hu, Guangming
    Qi, Yi
    Sun, Yu
    Zhou, Puchun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 253
  • [10] Earthquakes and circle packings
    G. Brock Williams
    Journal d’Analyse Mathématique, 2001, 85 : 371 - 396