Exact results for infinite and finite Sierpinski gasket fractals: Extended electron states and transmission properties

被引:20
作者
Chakrabarti, A
机构
[1] Department of Physics, University of Kalyani, Kalyani
关键词
D O I
10.1088/0953-8984/8/50/021
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We present an exact calculation to show that an infinite Sierpinski gasket fractal supports an infinite number of extended electron states. We work within the real space renormalization group (RSRG) scheme and show that by analysing the recursion relations for the Hamiltonian parameters one can extract the eigenvalues for an infinity of eigenstates that are of extended character. We also calculate the transmission coefficient for fractals of arbitrarily large generation. For the energy eigenvalues corresponding to the extended electron states, the transmission coefficient exhibits a novel feature. It turns out to be scale invariant with a value between zero and one depending upon the initial choice of the on-site potentials and the nearest-neighbour hopping integrals.
引用
收藏
页码:10951 / 10957
页数:7
相关论文
共 17 条
[1]  
BARKER AN, 1979, J PHYS C SOLID STATE, V12, P4961
[2]   ROLE OF A NEW-TYPE OF CORRELATED DISORDER IN EXTENDED ELECTRONIC STATES IN THE THUE-MORSE LATTICE [J].
CHAKRABARTI, A ;
KARMAKAR, SN ;
MOITRA, RK .
PHYSICAL REVIEW LETTERS, 1995, 74 (08) :1403-1406
[3]   Atypical extended electronic states in an infinite Vicsek fractal: An exact result [J].
Chakrabarti, A ;
Bhattacharyya, B .
PHYSICAL REVIEW B, 1996, 54 (18) :12625-12628
[4]  
CHAKRABARTI A, 1996, J PHYS-CONDENS MAT, V8, pL99
[5]   SOLUTIONS TO THE SCHRODINGER-EQUATION ON SOME FRACTAL LATTICES [J].
DOMANY, E ;
ALEXANDER, S ;
BENSIMON, D ;
KADANOFF, LP .
PHYSICAL REVIEW B, 1983, 28 (06) :3110-3123
[6]   ABSENCE OF LOCALIZATION IN A RANDOM-DIMER MODEL [J].
DUNLAP, DH ;
WU, HL ;
PHILLIPS, PW .
PHYSICAL REVIEW LETTERS, 1990, 65 (01) :88-91
[7]   CRITICAL PHENOMENA ON FRACTAL LATTICES [J].
GEFEN, Y ;
MANDELBROT, BB ;
AHARONY, A .
PHYSICAL REVIEW LETTERS, 1980, 45 (11) :855-858
[8]  
GEFEN Y, 1982, PHYS REV LETT, V49, P144
[9]   ELECTRONIC-PROPERTIES OF THE TIGHT-BINDING FIBONACCI HAMILTONIAN [J].
GUMBS, G ;
ALI, MK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (08) :951-970
[10]   ELECTRONIC STATES ON A FRACTAL - INVERSE-ITERATION METHOD [J].
KAPPERTZ, P ;
ANDRADE, RFS ;
SCHELLNHUBER, HJ .
PHYSICAL REVIEW B, 1994, 49 (20) :14711-14714