Principal Component Analysis of quantum correlation

被引:1
|
作者
Mosetti, Renzo [1 ]
机构
[1] Univ Trieste, Dept Math & Geosci, Via Weiss,4, I-34127 Trieste, Italy
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2016年 / 131卷 / 12期
关键词
DECOHERENCE;
D O I
10.1140/epjp/i2016-16443-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The concept of the quantum correlation matrix for observables leads to the application of PCA (Principal Component Analysis) also for quantum systems in Hilbert space. The consistency of PCA for quantum systems, is illustrated in the case of a qubit system with two Pauli matrices as observables and a density matrix polarized along the third one. As the main application of this theory, it is shown that the principal components are able to generate a class of quantum channels and depolarizing operators mapping density matrices (even pure states) to maximally mixed states.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Principal Component Analysis of quantum correlation
    Renzo Mosetti
    The European Physical Journal Plus, 131
  • [2] Quantum principal component analysis
    Lloyd, Seth
    Mohseni, Masoud
    Rebentrost, Patrick
    NATURE PHYSICS, 2014, 10 (09) : 631 - 633
  • [3] Quantum principal component analysis
    Seth Lloyd
    Masoud Mohseni
    Patrick Rebentrost
    Nature Physics, 2014, 10 (9) : 631 - 633
  • [4] Quantum principal component analysis algorithm
    Ruan, Yue
    Chen, Han-Wu
    Liu, Zhi-Hao
    Zhang, Jun
    Zhu, Wan-Ning
    Jisuanji Xuebao/Chinese Journal of Computers, 2014, 37 (03): : 666 - 676
  • [5] Resonant quantum principal component analysis
    Li, Zhaokai
    Chai, Zihua
    Guo, Yuhang
    Ji, Wentao
    Wang, Mengqi
    Shi, Fazhan
    Wang, Ya
    Lloyd, Seth
    Du, Jiangfeng
    SCIENCE ADVANCES, 2021, 7 (34)
  • [6] Quantum data compression by principal component analysis
    Yu, Chao-Hua
    Gao, Fei
    Lin, Song
    Wang, Jingbo
    QUANTUM INFORMATION PROCESSING, 2019, 18 (08)
  • [7] Quantum data compression by principal component analysis
    Chao-Hua Yu
    Fei Gao
    Song Lin
    Jingbo Wang
    Quantum Information Processing, 2019, 18
  • [8] Principal component analysis in sensory analysis: covariance or correlation matrix?
    Borgognone, MG
    Bussi, J
    Hough, G
    FOOD QUALITY AND PREFERENCE, 2001, 12 (5-7) : 323 - 326
  • [9] Correlation analysis and principal component analysis on microstructure parameters of clay
    Li, Shun-Qun
    Zheng, Gang
    Zhao, Rui-Bin
    Wang, Pei
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2009, 31 (07): : 1120 - 1126
  • [10] A Quantum Principal Component Analysis Algorithm for Clustering Problems
    Liu W.
    Wang B.
    Chen J.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (12): : 2858 - 2866