Influence of Surface Reflectance and Aerosol Optical Depth on Performance of Spaceborne Integral Path Differential Absorption Lidar

被引:2
作者
Yang Juxin [1 ]
Zhu Yadan [2 ]
Wang Qin [1 ]
Bu Lingbing [1 ]
Liu Jiqiao [2 ]
Chen Weibiao [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Key Lab Meteorol Disaster, Minist Educ,Key Lab Aerosol & Cloud Precipitat Ch, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210041, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Key Lab Space Laser Commun & Detect Technol, Shanghai 201800, Peoples R China
来源
CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG | 2019年 / 46卷 / 09期
关键词
remote sensing; integral path differential absorption lidar; surface reflectance; aerosol optical depth; signal-to-noise ratio; relative random error; AIRBORNE MEASUREMENTS;
D O I
10.3788/CJL201946.0910001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The distribution characteristics of global surface reflectance and aerosol optical depth arc analyzed using a surface -reflectance product of moderate-resolution imaging spectroradiometer and an aerosol -optical -depth product of European centre for medium -range weather forecasts. The effects of surface reflectance and aerosol optical depth on the echo power, detector output signal-to-noise ratio, and relative random error of spaceborne integral path differential absorption lidar systems arc analyzed. Results show that with the given system parameters, the singlepulse echo power range is approximately 0.299-321 nW, which requires the detector to have a high dynamic range. The output signal-to-noise ratio of single-pulse echo detector is greater than 13.6 dB, and the output signal-to-noise ratio of detector with an accumulative 118 times (land)/296 times (ocean) pulse is greater than 26 dB. The high values of relative random error appear in the sea near the Sahara Desert and Arabian Peninsula, and the maximum relative random error is 0.22 Yo (0.88 X 10(-6)).
引用
收藏
页数:9
相关论文
共 33 条
[1]   Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector [J].
Abshire, James B. ;
Ramanathan, Anand K. ;
Riris, Haris ;
Allan, Graham R. ;
Sun, Xiaoli ;
Hasselbrack, William E. ;
Mao, Jianping ;
Wu, Stewart ;
Chen, Jeffrey ;
Numata, Kenji ;
Kawa, Stephan R. ;
Yang, Mei Ying Melissa ;
DiGangi, Joshua .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (04) :2001-2025
[2]   Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar [J].
Abshire, James B. ;
Riris, Haris ;
Weaver, Clark J. ;
Mao, Jianping ;
Allan, Graham R. ;
Hasselbrack, William E. ;
Browell, Edward V. .
APPLIED OPTICS, 2013, 52 (19) :4446-4461
[3]   Pulsed airborne lidar measurements of atmospheric CO2 column absorption [J].
Abshire, James B. ;
Riris, Haris ;
Allan, Graham R. ;
Weaver, Clark J. ;
Mao, Jianping ;
Sun, Xiaoli ;
Hasselbrack, William E. ;
Kawa, S. Randoph ;
Biraud, Sebastien .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2010, 62 (05) :770-783
[4]   Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2 [J].
Amediek, A. ;
Fix, A. ;
Ehret, G. ;
Caron, J. ;
Durand, Y. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2009, 2 (02) :755-772
[5]  
Baldauf K, 2014, PERSPECT INSTR TECHN, P89
[6]   ESA Future Earth Observation Explorer Missions [J].
Bezy, J. -L. ;
Bensi, P. ;
Berger, A. ;
Carnicero, B. ;
Davidson, M. ;
Drinkwater, M. ;
Durand, Y. ;
Heliere, F. ;
Ingmann, P. ;
Langen, J. ;
Lin, C. C. ;
Meynart, R. ;
Rebhan, H. ;
Silvestrin, P. ;
Thompson, A. .
EARTH OBSERVING SYSTEMS XIII, 2008, 7081
[7]  
Campbell JF, 2014, OPTICS EXPRESS, V22
[8]   Advanced sine wave modulation of continuous wave laser system for atmospheric CO2 differential absorption measurements [J].
Campbell, Joel F. ;
Lin, Bing ;
Nehrir, Amin R. .
APPLIED OPTICS, 2014, 53 (05) :816-829
[9]  
Chen W, 2012, P 26 AAAI C ART INT
[10]  
Chen X, 2019, CHINESE J LASERS, V46