Harnessing catalytic pumps for directional delivery of microparticles in microchambers

被引:50
作者
Das, Sambeeta [1 ]
Shklyaev, Oleg E. [2 ]
Altemose, Alicia [1 ]
Shum, Henry [2 ]
Ortiz-Rivera, Isamar [1 ]
Valdez, Lyanne [1 ]
Mallouk, Thomas E. [1 ]
Balazs, Anna C. [2 ]
Sen, Ayusman [1 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[2] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA
基金
美国国家科学基金会;
关键词
CHEMICAL-POTENTIAL GRADIENTS; MICROFLUIDIC TRANSPORT; MICROPUMPS; NANOSCALE; DRIVEN; SEPARATION; CAPTURE; FLOW;
D O I
10.1038/ncomms14384
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The directed transport of microparticles in microfluidic devices is vital for efficient bioassays and fabrication of complex microstructures. There remains, however, a need for methods to propel and steer microscopic cargo that do not require modifying these particles. Using theory and experiments, we show that catalytic surface reactions can be used to deliver microparticle cargo to specified regions in microchambers. Here reagents diffuse from a gel reservoir and react with the catalyst-coated surface. Fluid density gradients due to the spatially varying reagent concentration induce a convective flow, which carries the suspended particles until the reagents are consumed. Consequently, the cargo is deposited around a specific position on the surface. The velocity and final peak location of the cargo can be tuned independently. By increasing the local particle concentration, highly sensitive assays can be performed efficiently and rapidly. Moreover, the process can be repeated by introducing fresh reagent into the microchamber.
引用
收藏
页数:10
相关论文
共 30 条
[1]   Active capture and transport of virus particles using a biomolecular motor-driven, nanoscale antibody sandwich assay [J].
Bachand, GD ;
Rivera, SB ;
Carroll-Portillo, A ;
Hess, H ;
Bachand, M .
SMALL, 2006, 2 (03) :381-385
[2]   A Freight Train of Nanotubes for Cargo Transport on the Nanoscale [J].
Burghard, Marko .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (45) :8565-8566
[3]   Chemotactic Separation of Enzymes [J].
Dey, Krishna Kanti ;
Das, Sambeeta ;
Poyton, Matthew F. ;
Sengupta, Samudra ;
Butler, Peter J. ;
Cremer, Paul S. ;
Sen, Ayusman .
ACS NANO, 2014, 8 (12) :11941-11949
[4]   Synthetic Nano- and Micromachines in Analytical Chemistry: Sensing, Migration, Capture, Delivery, and Separation [J].
Duan, Wentao ;
Wang, Wei ;
Das, Sambeeta ;
Yadav, Vinita ;
Mallouk, Thomas E. ;
Sen, Ayusman .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 8, 2015, 8 :311-333
[5]   Light-Driven Titanium-Dioxide-Based Reversible Microfireworks and Micromotor/Micropump Systems [J].
Hong, Yiying ;
Diaz, Misael ;
Cordova-Figueroa, Ubaldo M. ;
Sen, Ayusman .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (10) :1568-1576
[6]   Hydrazine fuels for bimetallic catalytic microfluidic pumping [J].
Ibele, Michael E. ;
Wang, Yang ;
Kline, Timothy R. ;
Mallouk, Thomas E. ;
Sen, Ayusman .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (25) :7762-+
[7]   Microfluidic Transport by AC Electroosmosis [J].
Islam, Nazmul ;
Wu, Jie .
INTERNATIONAL MEMS CONFERENCE 2006, 2006, 34 :356-361
[8]   A Biomimetic, Self-Pumping Membrane [J].
Jun, In-Kook ;
Hess, Henry .
ADVANCED MATERIALS, 2010, 22 (43) :4823-+
[9]   Enhanced Transport into and out of Dead-End Pores [J].
Kar, Abhishek ;
Chiang, Tso-Yi ;
Rivera, Isamar Ortiz ;
Sen, Ayusman ;
Velegol, Darrell .
ACS NANO, 2015, 9 (01) :746-753
[10]   Catalytic micropumps: Microscopic convective fluid flow and pattern formation [J].
Kline, TR ;
Paxton, WF ;
Wang, Y ;
Velegol, D ;
Mallouk, TE ;
Sen, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (49) :17150-17151