A Free Energy Landscape of CO2 Capture by Frustrated Lewis Pairs

被引:37
|
作者
Liu, Lei [1 ,2 ,5 ]
Lukose, Binit [3 ]
Ensing, Bernd [4 ]
机构
[1] Jacobs Univ Bremen, Dept Phys & Earth Sci, Campus Ring 1, D-28759 Bremen, Germany
[2] Univ Bonn, Inst Phys & Theoret Chem, Mulliken Ctr Theoret Chem, Beringstr 4, D-53115 Bonn, Germany
[3] Boston Univ, Sch Elect & Comp Engn, Boston, MA 02215 USA
[4] Univ Amsterdam, Vant Hoff Inst Mol Sci, NL-1098 XH Amsterdam, Netherlands
[5] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
来源
ACS CATALYSIS | 2018年 / 8卷 / 04期
关键词
CO2; capture; frustrated Lewis pairs; metadynamics simulations; free energy surface; Lewis acid; Lewis base; HYDROGEN ACTIVATION; MOLECULAR-DYNAMICS; CHEMISTRY; CARBON; REACTIVITY; REDUCTION; MECHANISM;
D O I
10.1021/acscatal.7b04072
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Frustrated Lewis pairs (FLPs) are known for their ability to capture CO2. Although many FLPs have been reported experimentally and several theoretical studies have been carried out to address the reaction mechanism, the individual roles of the Lewis acid and base of FLPs in the capture of CO2 are still unclear. In this study, we employed density functional theory (DFT) based metadynamics simulations to investigate the complete reaction path for the capture of CO2 by the tBu(3)P/B(C6F5)(3) pair and to understand the roles of the Lewis acid and base. Interestingly, we find that the Lewis acid plays a more important role than the Lewis base. Specifically, the Lewis acid is crucial for the catalytic properties and is responsible for both kinetic and thermodynamics control. The Lewis base, however, has less of an effect on the catalytic performance and is mainly responsible for the formation of a FLP system. On the basis of these findings, we propose a rule of thumb for the future synthesis of FLP-based catalysts for the capture of CO2.
引用
收藏
页码:3376 / 3381
页数:11
相关论文
共 50 条
  • [1] Homogeneous and Heterogeneous Frustrated Lewis Pairs for the Activation and Transformation of CO2
    Du, Tao
    Zhang, Peng
    Jiao, Zhen
    Zhou, Jiancheng
    Ding, Yuxiao
    CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (12)
  • [2] Silica Nanopowder Supported Frustrated Lewis Pairs for CO2 Capture and Conversion to Formic Acid
    Mentoor, Kgauhelo
    Twigge, Linette
    Niemantsverdriet, J. W. Hans
    Swarts, Jannie C.
    Erasmus, Elizabeth
    INORGANIC CHEMISTRY, 2021, 60 (01) : 55 - 69
  • [3] Implications of CO2 Activation by Frustrated Lewis Pairs in the Catalytic Hydroboration of CO2: A View Using N/Si+ Frustrated Lewis Pairs
    von Wolff, N.
    Lefevre, G.
    Berthet, J. -C.
    Thuery, P.
    Cantat, T.
    ACS CATALYSIS, 2016, 6 (07): : 4526 - 4535
  • [4] Activation of Small Molecules and Hydrogenation of CO2 Catalyzed by Frustrated Lewis Pairs
    Pal, Ranita
    Ghara, Manas
    Chattaraj, Pratim Kumar
    CATALYSTS, 2022, 12 (02)
  • [5] Ferrocene tethered boramidinate frustrated Lewis pairs: stepwise capture of CO2 and CO
    Palomero, Orhi Esarte
    Jones, Richard A.
    DALTON TRANSACTIONS, 2022, 51 (16) : 6275 - 6284
  • [6] Surface Analogues of Molecular Frustrated Lewis Pairs in : Heterogeneous CO2 Hydrogenation Catalysis
    Ghuman, Kulbir Kaur
    Hoch, Laura B.
    Wood, Thomas E.
    Mims, Charles
    Singh, Chandra Veer
    Ozin, Geoffrey A.
    ACS CATALYSIS, 2016, 6 (09): : 5764 - 5770
  • [7] Stoichiometric Reduction of CO2 to CO by Aluminum-Based Frustrated Lewis Pairs
    Menard, Gabriel
    Stephan, Douglas W.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (36) : 8396 - 8399
  • [8] Inorganic Frustrated Lewis Pairs in Photocatalytic CO2 Reduction
    Li, Taozhu
    Zhang, Weining
    Qin, Hao
    Lu, Lei
    Yan, Shicheng
    Zou, Zhigang
    CHEMPHOTOCHEM, 2021, 5 (06): : 495 - 501
  • [9] Aromaticity-promoted CO2 Capture by P/N-Based Frustrated Lewis Pairs: A Theoretical Study
    Zhuang, Danling
    Rouf, Alvi Muhammad
    Li, Yuanyuan
    Dai, Chenshu
    Zhu, Jun
    CHEMISTRY-AN ASIAN JOURNAL, 2020, 15 (02) : 266 - 272
  • [10] Dual-metal hydroxide with ordering frustrated Lewis pairs for photoactivating CO2 to CO
    Wang, Hailian
    Zhang, Weining
    Lu, Lei
    Liu, Depei
    Liu, Duanduan
    Li, Taozhu
    Yan, Shicheng
    Zhao, Siqin
    Zou, Zhigang
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 283