Surface modification effects on nanocellulose - molecular dynamics simulations using umbrella sampling and computational alchemy

被引:36
作者
Chen, Pan [1 ]
Lo Re, Giada [2 ,4 ]
Berglund, Lars A. [3 ,4 ]
Wohlert, Jakob [3 ,4 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Engn Res Ctr Cellulose & Its Derivat, Beijing 100081, Peoples R China
[2] Chalmers Univ Technol, Dept Ind & Mat Sci, SE-41296 Gothenburg, Sweden
[3] KTH Royal Inst Technol, Dept Fiber & Polymer Technol, SE-10044 Stockholm, Sweden
[4] KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
PARTICLE MESH EWALD; SOLUBILITY PARAMETERS; CELLULOSE NANOFIBERS; CELL-WALL; ACETYLATION; PROPERTY; WATER; NANOCOMPOSITES; NANOPARTICLES; NANOCRYSTALS;
D O I
10.1039/d0ta09105g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Topochemical modification of nanocellulose particles, in particular acetylation, is commonly used to reduce hygroscopicity and improve their dispersibility in non-polar polymers. Despite enormous experimental efforts on cellulose surface modification, there is currently no comprehensive model which considers both (a) the specific interactions between nanocellulose particles and the surrounding liquid or polymer matrix, and (b) the interactions between the particles themselves. The second mechanism is therefore frequently ignored. The present approach is based on atomistic molecular dynamics (MD) simulations, where computational alchemy is used to calculate the changes in interactions between nanocellulose and the surrounding medium (liquid or polymer) upon modification. This is combined with another method, based on potential of mean force, to calculate interactions between particles. Results show that both contributions are of equal importance for nanoparticle surface acetylation effects. The proposed method is not restricted to either cellulose or acetylation, and has the prospect to find application in a broad context of nanomaterials design.
引用
收藏
页码:23617 / 23627
页数:11
相关论文
共 68 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   Nonadditivity of nanoparticle interactions [J].
Batista, Carlos A. Silvera ;
Larson, Ronald G. ;
Kotov, Nicholas A. .
SCIENCE, 2015, 350 (6257) :138-+
[3]   The surface modification of cellulose fibres for use as reinforcing elements in composite materials [J].
Belgacem, MN ;
Gandini, A .
COMPOSITE INTERFACES, 2005, 12 (1-2) :41-75
[4]   Bio-based polyurethane reinforced with cellulose nanofibers: A comprehensive investigation on the effect of interface [J].
Benhamou, Karima ;
Kaddami, Hamid ;
Magnin, Albert ;
Dufresne, Alain ;
Ahmad, Azizan .
CARBOHYDRATE POLYMERS, 2015, 122 :202-211
[5]   Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space [J].
Benitez, A. J. ;
Walther, A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (31) :16003-16024
[6]   EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA [J].
BENNETT, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) :245-268
[7]   Multicomponent Solubility Parameters for Single-Walled Carbon Nanotube-Solvent Mixtures [J].
Bergin, Shane D. ;
Sun, Zhenyu ;
Rickard, David ;
Streich, Philip V. ;
Hamilton, James P. ;
Coleman, Jonathan N. .
ACS NANO, 2009, 3 (08) :2340-2350
[8]   Cellulose Biocomposites-From Bulk Moldings to Nanostructured Systems [J].
Berglund, Lars A. ;
Peijs, Ton .
MRS BULLETIN, 2010, 35 (03) :201-207
[9]  
Boldyrev V. V., 1990, Reactivity of Solids, V8, P231, DOI 10.1016/0168-7336(90)80023-D
[10]   The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana [J].
Busse-Wicher, Marta ;
Gomes, Thiago C. F. ;
Tryfona, Theodora ;
Nikolovski, Nino ;
Stott, Katherine ;
Grantham, Nicholas J. ;
Bolam, David N. ;
Skaf, Munir S. ;
Dupree, Paul .
PLANT JOURNAL, 2014, 79 (03) :492-506