Deformetrica 4: An Open-Source Software for Statistical Shape Analysis

被引:63
作者
Bone, Alexandre [1 ,2 ,3 ,4 ,5 ]
Louis, Maxime [1 ,2 ,3 ,4 ,5 ]
Martin, Benoit [1 ,2 ,3 ,4 ,5 ]
Durrleman, Stanley [1 ,2 ,3 ,4 ,5 ]
机构
[1] ICM, Inst Cerveau & Moelle Epiniere, F-75013 Paris, France
[2] INSERM, U 1127, F-75013 Paris, France
[3] CNRS, UMR 7225, F-75013 Paris, France
[4] Sorbonne Univ, F-75013 Paris, France
[5] INRIA, Aramis Project Team, F-75013 Paris, France
来源
SHAPE IN MEDICAL IMAGING, SHAPEMI 2018 | 2018年 / 11167卷
基金
欧洲研究理事会;
关键词
Statistical shape analysis; Computational anatomy; Large deformation diffeomorphic metric mapping; Open-source software; MORPHOMETRY; SURFACE;
D O I
10.1007/978-3-030-04747-4_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deformetrica is an open-source software for the statistical analysis of images and meshes. It relies on a specific instance of the large deformation diffeomorphic metric mapping (LDDMM) framework, based on control points: local momenta vectors offer a low-dimensional and interpretable parametrization of global diffeomorphims of the 2/3D ambient space, which in turn can warp any single or collection of shapes embedded in this physical space. Deformetrica has very few requirements about the data of interest: in the particular case of meshes, the absence of point correspondence can be handled thanks to the current or varifold representations. In addition to standard computational anatomy functionalities such as shape registration or atlas estimation, a bayesian version of atlas model as well as temporal methods (geodesic regression and parallel transport) are readily available. Installation instructions, tutorials and examples can be found at http://www.deformetrica.org.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 20 条
  • [1] Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study
    Allassonniere, Stephanie
    Kuhn, Estelle
    Trouve, Alain
    [J]. BERNOULLI, 2010, 16 (03) : 641 - 678
  • [2] Prediction of the Progression of Subcortical Brain Structures in Alzheimer's Disease from Baseline
    Bone, Alexandre
    Louis, Maxime
    Routier, Alexandre
    Samper, Jorge
    Bacci, Michael
    Charlier, Benjamin
    Colliot, Olivier
    Durrleman, Stanley
    [J]. GRAPHS IN BIOMEDICAL IMAGE ANALYSIS, COMPUTATIONAL ANATOMY AND IMAGING GENETICS, 2017, 10551 : 101 - 113
  • [3] Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms
    Bone, Alexandre
    Colliot, Olivier
    Durrleman, Stanley
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 9271 - 9280
  • [4] Charlier B., 2017, EFFICIENT KERNEL PRO
  • [5] The Varifold Representation of Nonoriented Shapes for Diffeomorphic Registration
    Charon, Nicolas
    Trouve, Alain
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (04): : 2547 - 2580
  • [6] Delyon B, 1999, ANN STAT, V27, P94
  • [7] Morphometry of anatomical shape complexes with dense deformations and sparse parameters
    Durrleman, Stanley
    Prastawa, Marcel
    Charon, Nicolas
    Korenberg, Julie R.
    Joshi, Sarang
    Gerig, Guido
    Trouve, Alain
    [J]. NEUROIMAGE, 2014, 101 : 35 - 49
  • [8] Fishbaugh J, 2014, I S BIOMED IMAGING, P385, DOI 10.1109/ISBI.2014.6867889
  • [9] Fletcher Thomas, 2011, Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy, P75
  • [10] A Bayesian framework for joint morphometry of surface and curve meshes in multi-object complexes
    Gori, Pietro
    Colliot, Olivier
    Marrakchi-Kacem, Linda
    Worbe, Yulia
    Poupon, Cyril
    Hartmann, Andreas
    Ayache, Nicholas
    Durrleman, Stanley
    [J]. MEDICAL IMAGE ANALYSIS, 2017, 35 : 458 - 474