MEAN DIMENSION OF FULL SHIFTS

被引:16
作者
Tsukamoto, Masaki [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
COMPACTA;
D O I
10.1007/s11856-018-1813-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a finite-dimensional compact metric space and K-Z the full shift on the alphabet K. We prove that its mean dimension is given by dimK or dim K - 1 depending on the "type" of K. We propose a problem which seems interesting from the view point of infinite-dimensional topology.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 17 条
[1]  
Boltyanskii V., 1949, Dokl. Akad. Nauk SSSR, V67, P597
[2]  
Dranishnikov A.N., 2001, Topology Atlas Invited Contributions, V6
[3]   INFINITE DIMENSIONAL COMPACTA HAVING COHOMOLOGICAL DIMENSION-2 - AN APPLICATION OF THE SULLIVAN CONJECTURE [J].
DYDAK, J ;
WALSH, JJ .
TOPOLOGY, 1993, 32 (01) :93-104
[4]  
Engelking R., 1978, Dimension theory
[5]  
Gromov M., 1999, Math. Phys. Anal. Geom., V2, P323
[6]  
Gutman Y., ARXIV151101802
[7]  
Gutman Y, 2016, GEOM FUNCT ANAL, V26, P778, DOI 10.1007/s00039-016-0372-9
[8]   Embedding Zk-actions in cubical shifts and Zk-symbolic extensions [J].
Gutman, Yonatan .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 :383-403
[10]   Mean topological dimension [J].
Lindenstrauss, E ;
Weiss, B .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 115 (1) :1-24