Modulation of localized solutions for the Schrodinger equation with logarithm nonlinearity

被引:30
作者
Calaca, L. [1 ]
Avelar, A. T. [1 ]
Bazeia, D. [2 ,3 ]
Cardoso, W. B. [1 ]
机构
[1] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil
[2] Univ Sao Paulo, Inst Fis, BR-05314970 Sao Paulo, Brazil
[3] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
基金
巴西圣保罗研究基金会;
关键词
Nonlinear Schrodinger equation; Logarithm nonlinearity; Similarity transformation; Solitons; SOLITONS; MEDIA; MODEL; TIME;
D O I
10.1016/j.cnsns.2014.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the presence of localized analytical solutions of the Schrodinger equation with logarithm nonlinearity. After including inhomogeneities in the linear and nonlinear coefficients, we use similarity transformation to convert the nonautonomous nonlinear equation into an autonomous one, which we solve analytically. In particular, we study stability of the analytical solutions numerically. (C) 2014 Elsevier B. V. All rights reserved.
引用
收藏
页码:2928 / 2934
页数:7
相关论文
共 28 条
[1]   Modulation of breathers in the three-dimensional nonlinear Gross-Pitaevskii equation [J].
Avelar, A. T. ;
Bazeia, D. ;
Cardoso, W. B. .
PHYSICAL REVIEW E, 2010, 82 (05)
[2]   Solitons with cubic and quintic nonlinearities modulated in space and time [J].
Avelar, A. T. ;
Bazeia, D. ;
Cardoso, W. B. .
PHYSICAL REVIEW E, 2009, 79 (02)
[3]   Solitons for the cubic-quintic nonlinear Schrodinger equation with time- and space-modulated coefficients [J].
Belmonte-Beitia, J. ;
Cuevas, J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (16)
[4]   Localized nonlinear waves in systems with time- and space-modulated nonlinearities [J].
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. ;
Vekslerchik, Vadym ;
Konotop, Vladimir V. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[5]   Exact solutions for the quintic nonlinear Schrodinger equation with time and space modulated nonlinearities and potentials [J].
Belmonte-Beitia, Juan ;
Calvo, Gabriel F. .
PHYSICS LETTERS A, 2009, 373 (04) :448-453
[6]   NONLINEAR-WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
ANNALS OF PHYSICS, 1976, 100 (1-2) :62-93
[7]  
Biswas A., 2010, Optics and Photonics Letters, V3, P1
[8]   Optical soliton perturbation with time-dependent coefficients in a log law media [J].
Biswas, Anjan ;
Cleary, Carl ;
Watson, James E., Jr. ;
Milovic, Daniela .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) :2891-2894
[9]   Optical Solitons with Higher Order Dispersion in a Log Law Media [J].
Biswas, Anjan ;
Watson, James E., Jr. ;
Cleary, Carl ;
Milovic, Daniela .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2010, 31 (09) :1057-1062
[10]   Optical solitons with log-law nonlinearity [J].
Biswas, Anjan ;
Milovic, Daniela .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) :3763-3767