Fracture toughness of aluminum nitride ceramics at cryogenic temperatures

被引:4
作者
Wei, Sai [1 ]
Xie, Zhipeng [1 ]
Xue, Weijiang [1 ]
Yi, Zhongzhou [2 ]
Chen, Juan [1 ]
Cheng, Lixia [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Honghe Univ, Coll Sci, Honghe 661100, Yunnan, Peoples R China
关键词
Toughness and toughening; Grain boundary; Cryogenic temperatures; THERMAL-CONDUCTIVITY; ELECTRON-MICROSCOPY; ALN CERAMICS; GRAIN-SIZE; INSULATION; STRENGTH; BEHAVIOR; MODE;
D O I
10.1016/j.ceramint.2014.05.012
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We reported, for the first time, the fracture toughness of aluminum nitride ceramics at cryogenic temperatures. The fracture toughness increased from 3.98 +/- 0.19 to 4.59 +/- 0.28 MPa m(1/2) with the decreasing temperature from 293 to 77 K. Increasing fraction of transgranular fracture (from 7.3% at 293 K to 14.5% at 77 K) was proposed as a governing mechanism for toughness improvement at cryogenic temperatures based on the experimental observations. The effect of residual stresses on crack propagation was theoretically analyzed, considering energy release rates of intergranular and transgranular fractures. The variation of crack paths would contribute to the change of fracture modes and fracture toughness at cryogenic temperatures. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:13715 / 13718
页数:4
相关论文
共 50 条
  • [31] Physical properties of aluminum nitride ceramics
    Ivanov, SN
    Zhukova, LM
    Khazanov, EN
    Taranov, AV
    EURO CERAMICS VII, PT 1-3, 2002, 206-2 : 699 - 702
  • [32] Criteria of ceramics fracture (edge chipping and fracture toughness tests)
    Gogotsi, G. A.
    CERAMICS INTERNATIONAL, 2013, 39 (03) : 3293 - 3300
  • [33] Limiting the lattice oxygen impurities to obtain high thermal conductivity aluminum nitride ceramics
    Zhang, Zhirui
    Wu, Haoyang
    Li, Tao
    Zhang, Zepeng
    Li, Jiaxin
    Xu, Haifeng
    Lu, Huifeng
    He, Qing
    Gu, Siyong
    Zhang, Deyin
    Yin, Haiqing
    Chu, Aimin
    Jia, Baorui
    Qu, Xuanhui
    Qin, Mingli
    CERAMICS INTERNATIONAL, 2024, 50 (18) : 33488 - 33495
  • [34] Effects of SmF3 addition on aluminum nitride ceramics via pressureless sintering
    Lin, Kunji
    Zong, Xiao
    Sheng, Pengfei
    Zhao, Shize
    Qi, Yujie
    Zhang, Wenduo
    Wu, Shanghua
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (15) : 6804 - 6814
  • [35] Effect of Carbon Nanotubes on Microstructure and Fracture Toughness of Nanostructured Oxide Ceramics
    Mirovoy, Yu A.
    Burlachenko, A. G.
    Buyakov, A. S.
    Dedova, E. S.
    Buyakova, S. P.
    RUSSIAN PHYSICS JOURNAL, 2021, 64 (03) : 390 - 396
  • [36] Thermal conductivity and mechanical strength of low-temperature-sintered aluminum nitride ceramics containing aluminum nitride whiskers
    Okazaki, Hiroya
    Kobayashi, Ryota
    Hashimoto, Rei
    Fukushi, Emiko
    Tatami, Junichi
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2020, 128 (11) : 991 - 994
  • [37] Comparison between different fracture toughness techniques in zirconia dental ceramics
    Alves, Manuel Fellipe Rodrigues Pais
    dos Santos, Claudinei
    Elias, Carlos Nelson
    Amarante, Jose Eduardo Vasconcellos
    Ribeiro, Sebastiao
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2023, 111 (01) : 103 - 116
  • [38] Evaluation of fracture toughness of zirconia ceramics with heterogeneous yttrium distribution microstructures
    Cui, Jinping
    Zhao, Wei
    Guan, Kang
    Rao, Pinggen
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2020, 56 (04) : 1229 - 1235
  • [39] Vickers indentation fracture toughness of Y-TZP dental ceramics
    Coric, Danko
    Renjo, Marijana Majic
    Curkovic, Lidija
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2017, 64 : 14 - 19
  • [40] Fracture Toughness of Thermal Spray Ceramics: Measurement Techniques and Processing Dependence
    Smith, Gregory M.
    Smith, Adam
    Sampath, Sanjay
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2018, 27 (07) : 1076 - 1089