Strong converse for entanglement-assisted capacity

被引:0
|
作者
Gupta, Manish K. [1 ]
Wilde, Mark M. [2 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Hearne Inst Theoret Phys, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Hearne Inst Theoret Phys, Ctr Computat & Technol, Dept Phys & Astron, Baton Rouge, LA 70803 USA
关键词
QUANTUM CHANNEL;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The fully quantum reverse Shannon theorem establishes the optimal rate of noiseless classical communication required for simulating the action of many instances of a noisy quantum channel on an arbitrary input state, while also allowing for an arbitrary amount of shared entanglement of an arbitrary form. Turning this theorem around establishes a strong converse for the entanglement-assisted classical capacity of any quantum channel. The present work proves the strong converse for entanglement-assisted capacity by a completely different approach. Namely, we exploit the recent entanglement-assisted "meta-converse" theorem of Matthews and Wehner, several properties of the recently established sandwiched Renyi relative entropy ( also referred to as the quantum Renyi divergence), and the multiplicativity of completely bounded p-norms due to Devetak et al. The proof here demonstrates the extent to which the Arimoto approach can be helpful in proving strong converse theorems, it provides an operational relevance for the multiplicativity result of Devetak et al., and it adds to the growing body of evidence that the sandwiched Renyi relative entropy is the correct quantum generalization of the classical concept for all alpha > 1.
引用
收藏
页码:716 / 720
页数:5
相关论文
共 50 条
  • [31] Entanglement-Assisted Quantum Turbo Codes
    Wilde, Mark M.
    Hsieh, Min-Hsiu
    Babar, Zunaira
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (02) : 1203 - 1222
  • [32] Entanglement-assisted tomography of a quantum target
    De Pasquale, A.
    Facchi, P.
    Giovannetti, V.
    Yuasa, K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (10)
  • [33] Entanglement-assisted quantum convolutional coding
    Wilde, Mark M.
    Brun, Todd A.
    PHYSICAL REVIEW A, 2010, 81 (04)
  • [34] Qubit- and entanglement-assisted optimal entanglement concentration
    Bandyopadhyay, S
    PHYSICAL REVIEW A, 2000, 62 (03):
  • [35] Entanglement required in achieving entanglement-assisted channel capacities
    Bowen, G
    PHYSICAL REVIEW A, 2002, 66 (05): : 8
  • [36] Optimal entanglement formulas for entanglement-assisted quantum coding
    Wilde, Mark M.
    Brun, Todd A.
    PHYSICAL REVIEW A, 2008, 77 (06):
  • [37] Entanglement-assisted concatenated quantum codes
    Fan, Jihao
    Li, Jun
    Zhou, Yongbin
    Hsieh, Min-Hsiu
    Poor, H. Vincent
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (24)
  • [38] Entanglement-assisted multiple-access channels: capacity regions and protocol designs
    Shi, Haowei
    Hsieh, Min-Hsiu
    Guha, Saikat
    Zhang, Zheshen
    Zhuang, Quntao
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 408 - 413
  • [39] Entanglement-assisted entropic uncertainty principle
    Duan, Kai-Min
    Li, Chuan-Feng
    FRONTIERS OF PHYSICS, 2012, 7 (03) : 259 - 260
  • [40] Entanglement-assisted quantum feedback control
    Yamamoto, Naoki
    Mikami, Tomoaki
    QUANTUM INFORMATION PROCESSING, 2017, 16 (07)