A high electromechanical coupling coefficient SHO Lamb wave lithium niobate micromechanical resonator and a method for fabrication

被引:92
作者
Olsson, Roy H., III [1 ]
Hattar, Khalid [2 ]
Homeijer, Sara J. [3 ]
Wiwi, Michael [3 ]
Eichenfield, Matthew [1 ]
Branch, Darren W. [4 ]
Baker, Michael S. [1 ]
Nguyen, Janet [1 ]
Clark, Blythe [2 ]
Bauer, Todd [3 ]
Friedmann, Thomas A. [3 ]
机构
[1] Sandia Natl Labs, MEMS Technol Dept, Livermore, CA 94550 USA
[2] Sandia Natl Labs, Radiat Solid Interact Dept, Livermore, CA 94550 USA
[3] Sandia Natl Labs, MESAFAB Operat Dept, Livermore, CA 94550 USA
[4] Sandia Natl Labs, Biosensors & Nanomat Dept, Livermore, CA 94550 USA
关键词
Contour mode resonator; Coupling coefficient; Lamb wave resonator; Lithium niobate; Microresonator; THIN; TECHNOLOGIES; FILTERS;
D O I
10.1016/j.sna.2014.01.033
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a high coupling coefficient, k(eff)(2), micromechanical resonator based on the propagation of SHO Lamb waves in thin, suspended plates of single crystal X-cut lithium niobate (LiNbO3). The thin plates are fabricated using ion implantation of He to create a damaged layer of LiNbO3 below the wafer surface. This damaged layer is selectively wet etched in a hydrofluoric (HF) acid based chemistry to form thin, suspended plates of LiNbO3 without the wafer bonding, layer fracturing and chemical mechanical polishing in previously reported LiNbO3 microfabrication approaches. The highest coupling coefficient is found for resonators with acoustic propagation rotated 170 degrees from the y-axis, where a fundamental mode SHO Lamb wave resonator with a plate width of 20 mu m and a corresponding resonant frequency of 101 MHz achieves a k(eff)(2) of 12.4%, a quality factor of 1300 and a resonator figure of merit (M) of 185. The k(eff)(2). and M are among the highest reported for micromechanical resonators. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 26 条
[1]   Thin-Film Piezoelectric-on-Silicon Resonators for High-Frequency Reference Oscillator Applications [J].
Abdolvand, Reza ;
Lavasani, Hossein M. ;
Ho, Gavin K. ;
Ayazi, Farrokh .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2008, 55 (12) :2596-2606
[2]   SAW and BAW Technologies for RF Filter Applications: A Review of the Relative Strengths and Weaknesses [J].
Aigner, Robert .
2008 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4 AND APPENDIX, 2008, :582-589
[3]  
[Anonymous], 1988, IEEE STAND PIEZ, P51
[4]   The generic nature of the Smart-Cut® process for thin film transfer [J].
Aspar, B ;
Moriceau, H ;
Jalaguier, E ;
Lagahe, C ;
Soubie, A ;
Biasse, B ;
Papon, AM ;
Claverie, A ;
Grisolia, J ;
Benassayag, G ;
Letertre, F ;
Rayssac, O ;
Barge, T ;
Maleville, C ;
Ghyselen, B .
JOURNAL OF ELECTRONIC MATERIALS, 2001, 30 (07) :834-840
[5]  
Campbell C.K., 1989, P IEEE, V77
[6]   Lamb Waves and Resonant Modes in Rectangular-Bar Silicon Resonators [J].
Casinovi, Giorgio ;
Gao, Xin ;
Ayazi, Farrokh .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2010, 19 (04) :827-839
[7]   Design and Analysis of Lithium-Niobate-Based High Electromechanical Coupling RF-MEMS Resonators for Wideband Filtering [J].
Gong, Songbin ;
Piazza, Gianluca .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (01) :403-414
[8]  
Gupta K.C., 1996, MICROSTRIP LINES SLO, P133
[9]   Development of substrate structures and processes for practical applications of various surface acoustic wave devices [J].
Kadota, M .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (6B) :4285-4291
[10]   AlN Microresonator-Based Filters With Multiple Bandwidths at Low Intermediate Frequencies [J].
Kim, Bongsang ;
Olsson, Roy H., III ;
Wojciechowski, Ken E. .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2013, 22 (04) :949-961