Matrix product formula for Uq(A2(1))-zero range process

被引:5
作者
Kuniba, Atsuo [1 ]
Okado, Masato [2 ]
机构
[1] Univ Tokyo, Inst Phys, Tokyo 1538902, Japan
[2] Osaka City Univ, Dept Math, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
关键词
quantum groups; integrable probability; zero range process; matrix product; YANG-BAXTER EQUATION; STEADY-STATES; MODELS; STATIONARY;
D O I
10.1088/1751-8121/50/4/044001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The U-q(A(n)((1)))-zero range processes introduced recently by Mangazeev, Maruyama and the authors are integrable discrete and continuous time Markov processes associated with the stochastic R matrix derived from the well-known U-q(A(n)((1))) quantum R matrix. By constructing a representation of the relevant Zamolodchikov-Faddeev algebra, we present, for n = 2, a matrix product formula for the steady state probabilities in terms of q-boson operators.
引用
收藏
页数:20
相关论文
共 27 条
[1]   Exact solutions of exactly integrable quantum chains by a matrix product ansatz [J].
Alcaraz, FC ;
Lazo, MJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (14) :4149-4182
[2]  
[Anonymous], 2007, EXACTLY SOLVED MODEL
[3]  
[Anonymous], ARXIV150207374
[4]   Nonequilibrium steady states of matrix-product form: a solver's guide [J].
Blythe, R. A. ;
Evans, M. R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (46) :R333-R441
[5]  
Borodin A., 2016, ARXIV160105770
[6]   Integrable approach to simple exclusion processes with boundaries. Review and progress [J].
Crampe, N. ;
Ragoucy, E. ;
Vanicat, M. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
[7]  
Drinfeld V. G., 1986, AM MATH SOC, V1, P798
[8]   Factorized steady states in mass transport models [J].
Evans, MR ;
Majumdar, SN ;
Zia, RKP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (25) :L275-L280
[9]   Nonequilibrium statistical mechanics of the zero-range process and related models [J].
Evans, MR ;
Hanney, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (19) :R195-R240
[10]  
Faddeev L D, 1980, CONT MATH PHYS, P107