Matrix product formula for Uq(A2(1))-zero range process

被引:5
作者
Kuniba, Atsuo [1 ]
Okado, Masato [2 ]
机构
[1] Univ Tokyo, Inst Phys, Tokyo 1538902, Japan
[2] Osaka City Univ, Dept Math, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
关键词
quantum groups; integrable probability; zero range process; matrix product; YANG-BAXTER EQUATION; STEADY-STATES; MODELS; STATIONARY;
D O I
10.1088/1751-8121/50/4/044001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The U-q(A(n)((1)))-zero range processes introduced recently by Mangazeev, Maruyama and the authors are integrable discrete and continuous time Markov processes associated with the stochastic R matrix derived from the well-known U-q(A(n)((1))) quantum R matrix. By constructing a representation of the relevant Zamolodchikov-Faddeev algebra, we present, for n = 2, a matrix product formula for the steady state probabilities in terms of q-boson operators.
引用
收藏
页数:20
相关论文
共 27 条
  • [1] Exact solutions of exactly integrable quantum chains by a matrix product ansatz
    Alcaraz, FC
    Lazo, MJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (14): : 4149 - 4182
  • [2] [Anonymous], 2007, EXACTLY SOLVED MODEL
  • [3] [Anonymous], ARXIV150207374
  • [4] Nonequilibrium steady states of matrix-product form: a solver's guide
    Blythe, R. A.
    Evans, M. R.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (46) : R333 - R441
  • [5] Borodin A., 2016, ARXIV160105770
  • [6] Integrable approach to simple exclusion processes with boundaries. Review and progress
    Crampe, N.
    Ragoucy, E.
    Vanicat, M.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [7] Drinfeld V. G., 1986, AM MATH SOC, V1, P798
  • [8] Factorized steady states in mass transport models
    Evans, MR
    Majumdar, SN
    Zia, RKP
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (25): : L275 - L280
  • [9] Nonequilibrium statistical mechanics of the zero-range process and related models
    Evans, MR
    Hanney, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (19): : R195 - R240
  • [10] Faddeev L D, 1980, CONT MATH PHYS, P107