Metabolic engineering of Escherichia coli for the production of riboflavin

被引:93
作者
Lin, Zhenquan [1 ,2 ,3 ]
Xu, Zhibo [1 ,2 ,3 ]
Li, Yifan [1 ,2 ,3 ]
Wang, Zhiwen [1 ,2 ,3 ]
Chen, Tao [1 ,2 ,3 ]
Zhao, Xueming [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Dept Biochem Engn, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Key Lab Syst Bioengn, Minist Educ, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
FED-BATCH CULTIVATION; L-LYSINE PRODUCTION; BACILLUS-SUBTILIS; CORYNEBACTERIUM-GLUTAMICUM; OVER-EXPRESSION; PURINE PATHWAY; BIOSYNTHESIS; GENE; OVEREXPRESSION; GLUCOSE;
D O I
10.1186/s12934-014-0104-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Riboflavin (vitamin B-2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification of central metabolism, riboflavin biosynthesis pathway and optimization of the fermentation conditions. Results: The basic producer RF01S, in which the riboflavin biosynthesis genes ribABDEC from E. coli were overexpressed under the control of the inducible trc promoter, could accumulate 229.1 mg/L of riboflavin. Further engineering was performed by examining the impact of expression of zwf (encodes glucose 6-phosphate dehydrogenase) and gnd (encodes 6-phosphogluconate dehydrogenase) from Corynebacterium glutamicum and pgl (encodes 6-phosphogluconolactonase) from E. coli on riboflavin production. Deleting pgi (encodes glucose-6-phosphate isomerase) and genes of Entner-Doudoroff (ED) pathway successfully redirected the carbon flux into the oxidative pentose phosphate pathway, and overexpressing the acs (encodes acetyl-CoA synthetase) reduced the acetate accumulation. These modifications increased riboflavin production to 585.2 mg/L. By further modulating the expression of ribF (encodes riboflavin kinase) for reducing the conversion of riboflavin to FMN in RF05S, the final engineering strain RF05S-M40 could produce 1036.1 mg/L riboflavin in LB medium at 37 degrees C. After optimizing the fermentation conditions, strain RF05S-M40 produced 2702.8 mg/L riboflavin in the optimized semi-defined medium, which was a value nearly 12-fold higher than that of RF01S, with a yield of 137.5 mg riboflavin/g glucose. Conclusions: The engineered strain RF05S-M40 has the highest yield among all reported riboflavin production strains in shake flask culture. This work collectively demonstrates that E. coli has a potential to be a microbial cell factory for riboflavin bioproduction.
引用
收藏
页数:12
相关论文
共 59 条
[1]   Genetic Control of Biosynthesis and Transport of Riboflavin and Flavin Nucleotides and Construction of Robust Biotechnological Producers [J].
Abbas, Charles A. ;
Sibirny, Andriy A. .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2011, 75 (02) :321-+
[2]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[3]   Biosynthesis of vitamin B2 (riboflavin) [J].
Bacher, A ;
Eberhardt, S ;
Fischer, M ;
Kis, K ;
Richter, G .
ANNUAL REVIEW OF NUTRITION, 2000, 20 :153-167
[4]   Effect of cadmium, mercury and copper on partially purified hepatic flavokinase of rat [J].
Bandyopadhyay, D ;
Chatterjee, AK ;
Datta, AG .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 1997, 167 (1-2) :73-80
[5]   Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum -: over expression and modification of G6P dehydrogenase [J].
Becker, Judith ;
Klopprogge, Corinna ;
Herold, Andrea ;
Zelder, Oskar ;
Bolten, Christoph J. ;
Wittmann, Christoph .
JOURNAL OF BIOTECHNOLOGY, 2007, 132 (02) :99-109
[6]   Kinetic modeling of riboflavin biosynthesis in Bacillus subtilis under production conditions [J].
Birkenmeier, Markus ;
Neumann, Susanne ;
Roeder, Thorsten .
BIOTECHNOLOGY LETTERS, 2014, 36 (05) :919-928
[7]   Flavoenzymes that catalyse reactions with no net redox change [J].
Bornemann, S .
NATURAL PRODUCT REPORTS, 2002, 19 (06) :761-772
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures [J].
Dauner, M ;
Sonderegger, M ;
Hochuli, M ;
Szyperski, T ;
Wüthrich, K ;
Hohmann, HP ;
Sauer, U ;
Bailey, JE .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (04) :1760-1771
[10]   Construction and fed-batch cultivation of Candida farnata with enhanced riboflavin production [J].
Dmytruk, Kostyantyn ;
Lyzak, Oleksy ;
Yatsyshyn, Valentyna ;
Kluz, Maciej ;
Sibirny, Vladimir ;
Puchalski, Czeslaw ;
Sibirny, Andriy .
JOURNAL OF BIOTECHNOLOGY, 2014, 172 :11-17