Kinematic shakedown by the Norton-Hoff-Friaa regularising method and augmented Lagrangian

被引:4
作者
Hamadouche, MA [1 ]
机构
[1] Lab Mecan Lille, CNRS, URA 1441, F-59655 Villeneuve Dascq, France
来源
COMPTES RENDUS MECANIQUE | 2002年 / 330卷 / 05期
关键词
computational solid mechanics; shakedown; viscoplasticity; optimization;
D O I
10.1016/S1631-0721(02)01441-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The shakedown analysis of elastic perfectly plastic structures is formulated as a discrete nonlinear mathematical programming problem by means of the finite element technique, The kinematical problem is regularized through the introduction of the Norton-Hoff viscoplastic material to overcome the non-differentiability of the objective function, and can be solved numerically by the augmented Lagrangian technique.
引用
收藏
页码:305 / 311
页数:7
相关论文
共 9 条
[1]  
[Anonymous], J MEC THEOR APPL
[2]  
Capsoni A, 1997, INT J NUMER METH ENG, V40, P2063, DOI 10.1002/(SICI)1097-0207(19970615)40:11<2063::AID-NME159>3.0.CO
[3]  
2-#
[4]   Shakedown analysis of defective pressure vessels by a kinematic approach [J].
Carvelli, V ;
Cen, ZZ ;
Liu, Y ;
Maier, G .
ARCHIVE OF APPLIED MECHANICS, 1999, 69 (9-10) :751-764
[5]  
Corradi L., 1974, Computer Methods in Applied Mechanics and Engineering, V3, P37, DOI 10.1016/0045-7825(74)90041-3
[6]   Application of shakedown theory to soil dynamics [J].
Hamadouche, MA ;
Weichert, D .
MECHANICS RESEARCH COMMUNICATIONS, 1999, 26 (05) :565-574
[7]  
Koiter WT, 1960, Prog Solid Mech, P167, DOI DOI 10.1017/S0001925900001918
[8]  
KONIG JA, 1978, B ACAD POLON SCI ST, V26, P165
[9]  
Melan E, 1938, Ingenieur-Archiv, V9, P116, DOI [10.1007/BF02084409, DOI 10.1007/BF02084409]